

Entregable E1.1: Documento del diseño inicial del

procesador y de las interfaces entre los diferentes

componentes (jerarquía de memoria, core y aceleradores)

Información del Documento
Código del proyecto 001-P-001723

Página web del proyecto https://drac.bsc.es/es

Plazo contractual 01/06/2019 - 31/05/2022

Nivel de difusión Interno

Naturaleza Entregable

Autor(es)

César Hernández, Abraham Ruiz, Carlos

Rojas, Alberto González, Neiel Leyva, Joan

Marimon, Xavier Carril, Vatistas

Kostalabros, Oscar Palomar, Santiago

Marco, Osman Unsal, Miquel Moretó,

Adrián Cristal

Contribuyente(s) BSC, UAB, UB, UPC y URV

Revisor(es)
Nehir Sonmez (BSC) y Antonio Espinosa

(UAB)

Palabras clave

Lagarto Ka, procesador fuera de orden,

jerarquía de memoria, interfaces con los

aceleradores

El proyecto DRAC con número de expediente 001-P-001723 ha sido cofinanciado en un 50% con

2.000.000€ por el Fondo Europeo de Desarrollo Regional de la Unión Europea en el marco del

Programa Operativo FEDER de Cataluña 2014-2020, con el soporte de la Generalitat de Cataluña.

1

Control de cambios
Versión Fecha Autor Comentario

01 15/09/2020 César Hernández

Descripción del diseño de los elementos del

procesador Lagarto Ka y de sus interfaces de

comunicación.

02 30/09/2020 César Hernández
Incorporación de los cambios sugeridos por los

revisores internos. Entregable enviado.

03 15/11/2020 César Hernández Revisión final y cierre del documento

2

Content

Table Index 3

Figure Index 4

Lagarto Ka: Out-of-order General Purpose Processor 5

Hypervisor support (RISC-V H extension) 7

Trap Handling 7

Two-Stage Address Translation 7

Memory Hierarchy Description of the Out-of-Order Processor 8

On-chip memory hierarchy 8

Main memory access on the board 13

SDRAM 13

HyperRAM 13

Main memory access on accessory FPGA board 14

Packetizer interface [5] 15

SerDes interface 15

Integrating Multiple Accelerators in an Out-of-Order Processor 18

Tightly Coupled Accelerators (TCA) to the Processor’s Pipeline 18

Loosely Coupled Accelerators (LCA) from the Processor’s Pipeline 19

Genomics Accelerator 20

Interface with the Genomics Accelerator 20

Wavefront accelerator and FM-Index custom vector instructions 22

Autonomous Navigation Accelerator 23

Interface with the Autonomous Navigation Accelerator 24

Post-Quantum Cryptography Accelerator 26

Interface with Post-Quantum Cryptography Accelerator 26

Conclusions 29

References 31

3

Table Index

Table 1. Lagarto Ka out-of-order core parameters. 6

Table 2. Lagarto Ka and accelerators features. 7

Table 3. Memory hierarchy features. 8

Table 4. Memory hierarchy latencies. 9

Table 5. Instruction cache memory signal interface definition. 10

Table 6. Data cache memory signal interface definition. 11

Table 7. Vector Processing Unit Interface. 20

Table 8. Basic interface features for TCA and LCA modules. 26

4

Figure Index

Figure 1. Lagarto Ka out-of-order core insights. 4

Figure 2. General overview of the Lagarto Ka out-of-order microarchitecture. 5

Figure 3. Control signals and data buses from the Core to the I-Cache. 8

Figure 4. Control signals and data buses from the I-Cache to the Core. 8

Figure 5. Data buses from the core to the D-Cache. 9

Figure 6. Control signals from the core to the Data-Cache. 10

Figure 7. Control signals and data buses from the data cache to the core. 10

Figure 8. Block diagram of core to/from HyperRAM modules data path. 12

Figure 9. Block diagram of the connection to main memory on FPGA. 13

Figure 10. Connection between PMA and PCS. 14

Figure 11. Architecture of the PMA. 15

Figure 12. Architecture of the PCS. 15

Figure 13. Tightly coupled accelerators (TCA) to the processor’s pipeline. 17

Figure 14. Loosely Coupled Accelerators (LCA) from the processor’s pipeline. 18

Figure 15. Block diagram of a systolic-array-based architecture. 22

Figure 16. Memory Addressing Control Scheme. 23

Figure 17. Accelerator configuration signals. 24

Figure 18. Example 1 Galois Field Arithmetic acceleration (TCA). 26

Figure 19. Example 2: full matrix multiplication. 27

Figure 20. Interface between the cryptographic accelerator(s) and the RISC-V core. 28

5

1. Lagarto Ka: Out-of-order General Purpose

Processor

The Lagarto Ka out-of-order general purpose core designed in the DRAC project is planned to be a 2-

way 64-bit out-of-order (OoO) superscalar core that implements the RISC-V instruction set architecture.

This core is coupled to different accelerators specialized in emerging applications: a vector processing

unit, a bioinformatics accelerator, a post-quantum cryptographic accelerator and an autonomous

navigation accelerator. Section 1 describes the architecture of the out-or-order design, while Section 2

describes the interface with the memory hierarchy. Section 3 describes the three envisioned ways to

incorporate accelerators to the out-of-order core. Finally, Sections 4-6 describe the different interfaces

with the envisioned accelerators in the DRAC project. Figure 1 shows an example of the configuration

with the accelerators with the Lagarto Ka out-of-order core.

Figure 1. Lagarto Ka out-of-order core insights.

The Lagarto Ka microarchitecture is shaped by two main blocks: a sequential front-end, and an out-of-

order back-end. On the front-end, the core fetches and issues two instructions each clock cycle, and is

able to execute speculative datapaths, resolving instruction predictions by including a branch predictor

coupled with a simplified recovery mechanism to handle mispredictions.

The instructions dispatched to the back-end of the Lagarto Ka are stored into different instruction

queues, which are able to host up to 32 instructions. The design of the queues is focused on reducing

energy consumption. In the first version of the design, the core is configured with a 5-instruction issue

width, matching the instruction queues included; in consequence, this parameter can change to provide

support for other accelerators.

The instruction execution is performed by different functional units compounded with a bypassing logic

technique to effectively broadcast the source operands for dependent instructions. To preserve program

order among the instructions in-flight and guarantee core recovery to a previous state, a 64-entry fully

distributed reorder buffer is included. Finally, a group commitment mechanism is required into the back-

end, looking for restoring the program order.

6

Table 1. Lagarto Ka out-of-order core parameters.

Feature Parameter

L1 instruction cache 16 KB

L1 data cache 32 KB

L2 cache size 256 KB

Fetch-width 2 instructions

Branch predictor 128 entries

Issue-width 5 instructions

Register File 128 registers

Integer ALU latency 1 clock cycle

ROB entries 128

Recovery pages 1

Table 1 shows a more detailed specification of the parameters that are initially considered for the design

of the core. Additionally, Figure 2 shows a general block diagram of the microarchitecture to implement.

Figure 2. General overview of the Lagarto Ka out-of-order microarchitecture.

7

In order to achieve a proper program execution, the microarchitecture for both the core and the

accelerators follows the specifications of the different RISC-V ISA extensions used. Table 2 describes

the general features of the core and each accelerator, as well as the RISC-V extensions considered for

its design.

Table 2. Lagarto Ka and accelerators features.

Architecture specification Version Features

Lagarto Ka out-of-order RISC-V I, M, A, H

extensions

2-way 64-bit out-of-order architecture

Post-quantum cryptography

accelerator

RISC-V Custom extension Loosely and tightly coupled accelerators. ISA custom

instructions, virtualization with device driver operated by

OS kernel.

Autonomous navigation

accelerator

RISC-V Custom extension Loosely coupled accelerator. Systolic array with

approximate compute ALUs.

Genomics accelerator:

Vector Processing Unit

RISC-V Vector (V)

extension version 0.7.1

4-lane 512-bit integer and floating-point vector

architecture; FM-Index and WFA vector support

Genomics accelerator:

FM-Index accelerator

RISC-V Custom extension Context virtualization support

Genomics accelerator:

Wavefront accelerator

RISC-V Custom extension Loosely Coupled Accelerator

Multilane parallel execution along with on-chip memory

structures

1.1. Hypervisor support (RISC-V H extension)

The Hypervisor Extension aims to improve virtualization performance, mainly by reducing the

frequency of traps that need to be handled by the Host OS. The approach the RISC-V specification

defines is to virtualize the supervisor mode (S mode), changing the existing supervisor mode into an

Hypervisor-extended supervisor mode (HS mode) and adding both virtual user mode (US mode) and

virtual supervisor mode (VS mode). Additionally, the address translation mechanism is augmented

with a second stage. This new setup virtualizes the memory and the memory mapped I/O devices for

the guest OS. This extension is being developed as part of WP2.

1.1.1. Trap Handling

RISC-V features a trap delegation mechanism that allows different privilege levels to handle interrupts

and exceptions instead of the M-mode. This is done by selecting which traps are delegated to a lower

privilege level, going from M to HS to VS to VU if user interrupts are enabled.

1.1.2. Two-Stage Address Translation

When virtualization is enabled, all memory accesses go through two stages. In the first one, the virtual

address is translated into a guest physical address. This stage is known as VS-stage. Afterwards, this

address is translated again to a supervisor physical address. This is known as the G-stage. In this stage,

all accesses are considered U-mode accesses, even those performed on VS-mode data structures; a guest

page-fault must be handled by either M or HS and cannot be relegated further.

8

2. Memory Hierarchy Description of the Out-of-

Order Processor

The memory system is in charge of supplying a constant stream of instructions to the pipeline, as well

as managing data memory accesses (load/store), both performed based on the virtual address previously

computed. For this, a memory hierarchy has to be included, designed to be able to support several

requests; these requests could come from the Lagarto Ka out-of-order core, along with the accelerators.

2.1. On-chip memory hierarchy

The memory hierarchy for the Lagarto Ka is composed of a 4-way 16KB instruction cache and a 4-way

16KB data cache in level 1, both coupled to an 8-way and 64KB shared cache in a superior level (LLC).

The processor chip accesses main memory with several alternative interfaces for memory on the same

PC board as the processor chip, or remote DDR memory on an FPGA board through a custom link. The

different interfaces are explained below.

Table 3. Memory hierarchy features.

Instruction Cache Data Cache

● 64 sets, 4-way

● 16 instructions per set (64B cache lines)

● Total size 16KB

● 8-entry TLB

● 4-way 16KB

● Non-blocking, with configurable # of MSHR

● 64B cache lines

● 8-entry TLB

LLC

● 128 sets, 8 ways

● 16 words (32 bits) per set (64KB)

● Total size 64 KB

● Accepts up to 2 concurrent requests

Other features

First level caches are Virtually Indexed Physically Tagged (VIPT).

Caches are inclusive.

Random replacement policy using lower bits.

Page size: 1 GB

Coherence protocol: MESI (a directory is used to maintain coherence, this is located in the LLC).

9

Table 4. Memory hierarchy latencies.

Status Latency

Hit IL1 3 cycles

Hit DL1 3 cycles

Miss IL2 20 cycles

Miss DL2 22 cycles

Finally, the communication between the core and the level 1 instruction and data caches is defined as

shown in the following figures.

Figure 3. General overview of the control signals and data buses from the core to the Instruction Cache.

Figure 3 shows the data flow from the Lagarto Ka (core) to the Instruction Cache (iCache), while the

data flow in the opposite direction, from the Instruction Cache to the Lagarto Ka, is shown in Figure 4.

The communication is performed through data buses (in blue) and control signals (in red), keeping the

information clearly separated. Table 5 describes in detail these interfaces.

Figure 4. General overview of the control signals and data buses from the Instruction Cache to the core.

10

Table 5. Instruction cache memory signal interface definition.

Size Signal Direction Description

12 icache_req_bits_idx CORE->IMEM Index of the requested address

28 icache_req_bits_vpn CORE->IMEM VPN of the requested address

2 icache_req_bits_thread_id CORE->IMEM Thread identifier

1 icache_req_valid CORE->IMEM A valid request

1 icache_req_bits_kill CORE->IMEM Kill request in flight

1 icache_invalidate CORE->IMEM Invalidate active cache line

128 icache_resp_bits_datablock IMEM->CORE Cache line delivery

40 icache_resp_vaddr IMEM->CORE Requested address

2 icache_resp_thread_id IMEM->CORE Applicant thread

1 icache_resp_valid IMEM->CORE A valid delivery or exception

1 icache_resp_xcpt_if IMEM->CORE An exception

1 icache_req_ready IMEM->CORE Cache ready to accept requests

Figure 5 shows the data buses that the Lagarto Ka uses to send data to the Data Cache (dCache). These

buses not only contain the data computed by the core to be stored into the cache, but also include the

memory operation type to be performed (load, store or atomic), the memory address, and the instruction

tag identifier.

11

Figure 5. General overview of the data buses from the core to the Data Cache.

Figure 6. General overview of the control signals from the core to the Data Cache.

Figure 6 shows the control signals tied to the data buses that send information to the Data Cache. These

signals indicate to the Data Cache when a request is valid, or whether it has to be discarded.

Figure 7. General overview of the control signals and data buses from the data cache to the core.

Finally, Figure 7 shows the data buses and the control signals sent to the core from the Data Cache. This

information is received by the Load/Store Queue to determine whether it is possible to send a new

request, or it is necessary to wait for the memory to be ready; similarly, the Load/Store Queue

determines when a request must be resent or discarded, or if it has produced an exception. Table 6

describes in detail the signals of this interface.

12

Table 6. Data Cache memory signal interface definition.

Size Signal Direction Description

1 dmem_ordered_i DMEM -> ROB Indicates that the memory is busy

1 dmem_req_ready_i DMEM -> ROB Set to ‘1’ when the dcache is able to accept a

new request.

64 dmem_resp_bits_data_subw_i DMEM -> ROB Data input bus

1 dmem_resp_bits_has_data_i DMEM -> ROB When is set to “1” together with a

dmem_resp_valid_i indicates valid data in the

dmem_resp_bits_data_subw_i signal.

1 dmem_resp_bits_nack_i CORE -> DMEM If true (1), indicates that the memory request

must be issued again from the LSQ to the D-Cache

8 dmem_resp_bits_tag_i CORE -> DMEM The tag is used as an ID of the instruction.

1 dmem_resp_valid_i CORE -> DMEM Response valid from the dcache. This can be

signaled 2 or more cycles after a request was

done but not before.

1 dmem_xcpt_ma_st_i CORE -> DMEM Misaligned store exception

1 dmem_xcpt_ma_ld_i CORE -> DMEM Misaligned load exception

1 dmem_xcpt_pf_st_i CORE -> DMEM Store page fault exception

1 dmem_xcpt_pf_ld_i CORE -> DMEM Load page fault exception

1 dmem_req_valid_o CORE -> DMEM Request valid to the dcache

4 dmem_op_type_o CORE -> DMEM Data bit length

5 dmem_req_cmd_o CORE -> DMEM Contains the memory command, such as 00100 for

AMOSWAP, 01011 for AMOAND, and so on.

64 dmem_req_bits_data_o CORE -> DMEM Store/amo data output

40 dmem_req_bits_addr_o CORE -> DMEM Memory request address

8 dmem_req_bits_tag_o CORE -> DMEM 7-bit rob entry used as ID to identify the owner

of the request

13

1 dmem_req_invalidate_lr_o CORE -> DMEM Set when exception

1 dmem_req_bits_kill_o CORE -> DMEM Kill in-flight instructions

2.2. Main memory access on the board

The main memory is considered as a 1 GB memory, in one or several modules external to the chip.

There are several types of memory, from high bandwidth, like DDR, to moderate bandwidth, such as

SDRAM or HyperRAM.

Memories such DDR3 that operate at high frequencies require an appropriate physical interface PHY to

ensure data is transmitted correctly. Therefore, memory modules directly connected to the processor

chip are considered to be in the SDRAM and HyperRAM technologies.

2.2.1. SDRAM

The purpose of the SDRAM controller is to provide an alternative way to access main memory without

requiring an auxiliary FPGA board. The controller is made for SDR (Single Data Rate) DRAM, which

operates at lower frequencies (typically up to 166 MHz) and does not require any specific physical

interface.

Bandwidth depends on the operating frequency of the SDRAM and the width of the data bus. With an

operating frequency of 166 MHz and a data bus of 16 bits, the bandwidth will be 332 MBps. The

bandwidth scales linearly with the data bus (increasing the data bus to 32 bits, we obtain a bandwidth

of 664 MBps). Capacity depends on the number of SDRAM chips used, each chip has up to 64 MB.

Then, for example, 256 MB of memory can be obtained by using 4 SDRAM chips.

The SDRAM controller acts as an interface between the SoC and the external memory. For one side,

the controller communicates with the main processor using the AXI protocol and, on the other side, it

contains the logic required to manage the accesses to the SDRAM, generate the appropriate commands

and control the refresh sequence. Additionally, the SDRAM controller contains an asynchronous FIFO

used to synchronize the data between different clock domains, such as from the main clock to the

SDRAM clock.

2.2.2. HyperRAM

The Cypress HyperRAM Self-Refresh Dynamic Random Access Memory (DRAM) is one of the few

memories on the market that has a reduced number of bus signals. While DDR3 memories have 240

pins, the HyperRAM only has 12 pins. Also, the DDR3 memory controller IP fills a significant space

on the floor plan if we want to introduce it on the ASIC, and it is protected from modifications with a

costly license. Similar to the SDRAM controller, one of the main purposes of the HyperRAM controller

is to provide an alternative way to access the main memory without requiring an auxiliary FPGA board.

With the memory of 1.8V, we can accomplish a maximum frequency of 166MHz, achieving then, a

maximum bandwidth of 333MBps within 8-bit data bus. About the size of each module, there are two

types, the 64Mb (8MB) one and the 128Mb (16MB) one. It should be noted that these memory modules

can be merged together into a larger block. For example, we can achieve 512Mb (64MB) grouping four

modules of 128Mb each.

14

This memory has the Double-Data Rate (DDR) characteristic. Additionally, we can do sequential burst

transactions, meaning that for a given address, a consecutive number of bytes (more than four bytes) are

read or written in a single transaction.

Like the SDRAM controller, AXI4 is the communication protocol to interface the core and the

memory modules. Below in Figure 8, we can observe a brief outline of the logic used.

Figure 8. Block diagram of core to/from HyperRAM modules data path.

As the size of the bus of the core interface is about 128 bits, and the size of the bus of the HyperRAM

AXI wrapper is 32 bits, a buffer was inserted between them in order to solve the change of bus size.

Also, the HyperRAM AXI Wrapper contains FIFOs and a Finite State Machine (FSM) to arbitrate the

sequence of commands to send to the HyperRAM Controller.

2.3. Main memory access on accessory FPGA board

High bandwidth memory standards such as DDR3 and DDR4 need a physical interface (PHY) on the

chip, which is very expensive to acquire and very costly to develop internally. However, commercial

FPGA evaluation boards (e.g. [2] or [3]) contain DDR memory on the board, connected to the FPGA

device that integrates the necessary PHY and controller. In order to access DDR memory on the FPGA

board, two interfaces between the out-of-order processor chip and the FPGA are defined (see Figure 9

below):

● Packetizer: a low bandwidth interface [5].

● SerDes: high bandwidth serial interface (HBWIF).

https://www.xilinx.com/support/documentation/boards_and_kits/kc705/ug810_KC705_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vcu128/ug1302-vcu128-eval-bd.pdf

15

Figure 9. Block diagram of the connection to main memory on FPGA using the two interfaces: serders on the left

of the FMC, packetizer on the right handside. Additional on-board memory SDRAM and HyperRAM are

considered (interfaces not included in the schema) [5].

2.3.1. Packetizer interface [5]

The lack of a physical interface for a DDR3 memory controller can be overcome by the design of a

custom interface to communicate with memory using the physical DDR3 memory from an external

FPGA board. Memory access is then split into two parts: one on the FPGA that contains the memory

controllers to access the main memory, and a second one on the chip containing the core and rest of the

uncore system, including L1 and L2 cache memories.

Both parts are connected with an FPGA Mezzanine Card (FMC) connector. Based on our empirical

evaluation, we achieved a steady transfer rate operating at 50 MHz using an FMC cable with a 128-bit

bus split into 4 transactions of 32 bits each.

2.3.2. SerDes interface

Another method to connect the FPGA containing DDR controllers and PHY is using high speed serial

interfaces, which can achieve data rates close to 10 Gbps per channel. This interface needs two

components integrated in the processor chip:

16

● PMA (Physical Media Access): PHY interface capable of transmitting in the Gbps range. This

is an analog high frequency component that uses differential signaling: two wires for TX and

two wires for RX in each channel.

● PCS (Physical Coding Sublayer): Digital layer interfacing between the PHY and the L2

memory.

On the FPGA side, a compatible PHY I/O (GTX or GTY depending on the FPGA device on the board)

communicate with the on-chip PHY through an FMC connector, and are linked to the digital control

that manages the DDR controller and PHY (see Figure 9). Several lanes can be considered to increase

data throughput.

PMA architecture and specification

Figure 10. Connection between PMA and PCS.

The PMA is a serializer-deserializer designed to work at 8 Gbps with a parallel bit width of 32. It

contains an 8 GHz PLL.

Figure 11. Architecture of the PMA.

17

PCS architecture

The architecture of a single PCS lane is depicted in the image below.

Figure 12. Architecture of the PCS.

Tx User Data (TxUD) and Rx User Data (RxUD) are Axi-Stream busses, composed of the following

signals:

● tdata [63:0]: payload;

● tvalid: triggers valid data;

● tready: only on the TX side, determines if the Slave is able to receive data in a given clock

cycle;

● tlast: last element of a packet;

● tkeep, tuser, tid: not mandatory;

Incoming data in the TxUD bus are firstly sent to the 64b/66b encoder, that adds 2-bit of encoding

information to the 64-bit payload (e.g., setting them to 10 in case of idle packets, and to 01 in case of

data packets). According to the 64b/66b specs, the 64-bit related to TxUD data are then scrambled,

allowing to ensure an adequate number of 0-1 (or 1-0) transitions of the serial data, thus preventing the

CDR losses in the receiver side.

Scrambled data, together with the unscrambled 2-bit sync signal created by the encoder, are sent to the

66/32 gearbox, whose purpose is to convert the 66-bit bus in the format expected by the PMA layer (i.e.,

32-bit).

On the receiver side, the 32-bit bus from the PMA layer is converted in a 66-bit format by the 32/66

gearbox, and aligned by the comma aligner. The comma aligner checks that, for a given time of iterations

(e.g., for 64 66-bit packets), the two MSBs of the 66-bit signal contain encoded data (e.g., bit 65 and 66

must be equal to 10 for 64 incoming packets). Otherwise, the aligner sends a shift_req to the 32/66

gearbox, which shifts the incoming data by 1 bit. The gearbox should have an internal shift register of

256 bits, to allow selecting the whole word of 66 bits without overflows in the shift mechanism. Aligned

data are descrambled and decoded to create the RxUD 64-bit bus.

18

3. Integrating Multiple Accelerators in an Out-of-

Order Processor

The process of integrating an accelerator with the processor is as crucial as the actual design of the

accelerator. Certain design choices have to be made early on, in the design phase in order to interface

the hardware accelerator to the core in an efficient, yet resource savvy manner. Following are the two

main ways that an accelerator can be coupled with the main processing element.

3.1. Tightly Coupled Accelerators (TCA) to the Processor’s

Pipeline

The first case of the interfaces is tightly-coupled [5] to the core's pipeline accelerator. This scenario adds

one or more computational units (CUs) to the execution stage of the pipeline. The CUs share key-

resources with the core (i.e. register file and MMU) and finish their computation in a few clock cycles.

They rarely have internal memory, since they use the L1 cache of the core, but do use configuration

registers to customize their computation. The resulting wider pipeline is able to execute the new

computations performed by the CUs, provided that they are exposed to the Instruction Set Architecture

(ISA) as new instructions. This case is depicted in Figure 13.

Figure 13. Tightly coupled accelerators (TCA) to the processor’s pipeline.

The interface with the core is the ISA extension itself, since the hardware addition needs no more than

a bigger multiplexer for the output of the execution stage and a modification at the decoding stage

reflecting the addition of the new instructions. Such alterations of the ISA are well documented for the

RISC-V ISA case. Additionally, separate ISA extensions provided by the RISC-V community (i.e vector

and bit manipulation extensions) can be used in this acceleration scenario as long as there is an

underlying hardware module performing the computations. Special care has to be taken at the software

stack, since the ISA extension requires modifications at the compiler. Moreover, timing closure of the

accelerator has to be taken care of, so as not to interfere with the critical path of the core, thus affecting

the operating frequency. The latter issue also puts constraints on the area budget of the accelerator.

19

3.2. Loosely Coupled Accelerators (LCA) from the Processor’s

Pipeline

The case of a LCA best describes a hardware module that performs coarse-grained computations, thus

consuming a bigger area budget than the TCA. Their computation takes at least tens of clock cycles to

finish. The LCA is usually equipped with its own internal private memory (i.e scratchpad) in order to

hold data values and store intermediate results. Typically, the accelerator is also coupled with either the

Last Level Cache (LLC) of the core or the DRAM itself in order to load and store the results it computes,

also making them available to the core. That interface can either be coherent or not. This communication

is often handled by a Direct Memory Access (DMA) mechanism, thus preventing the stall of the

computational core as long as the hardware accelerator performs the memory access. The latter is taken

care of by the DMA controller (DMAC) that resides in the hardware accelerator and is part of its

interface with the core. A generic view of a LCA can be seen in Figure 14.

Figure 14. Loosely Coupled Accelerators (LCA) from the processor’s pipeline.

Unlike the TCA, a LCA has to be controlled from the kernel space by a device driver. The user

application issues a system call that invokes this driver and takes care of moving data to the accelerator

and configuring its computation. When the computation finishes, the accelerator issues an interrupt,

signaling the end of the respective computation. That communication can be based on a polled or

interrupt-based interface from the core’s perspective. An interrupt service routine (ISR) might induce a

timing overhead, but it lets the core perform separate computations or even shut down, while the

accelerator performs its own computations. Polling offers the quickest response and less timing

overhead, but keeps the core busy waiting for the results.

Regarding the programming model of the accelerator in the LCA scenario, there are several ways it can

be constructed. In a simple embedded processor scenario there might be no OS service and the

accelerator is used in bare metal with ad-hoc custom protocols. In the case we have an OS enabled

system, the accelerator can either be a memory mapped device controlled by the user space or the kernel

can be issuing commands to the accelerator via virtualization of the latter and the use of a device driver.

20

4. Genomics Accelerator

To search sequence databases that may contain billions of sequences, different genomic algorithms are

implemented, these algorithms become computationally expensive. Consequently, in this design, we

focused on accelerating the most fundamental genomics algorithms by offloading the computationally

repeated portion of the algorithms to custom hardware instructions. These simple modifications

accelerate the algorithm runtime compared to the pure software implementation. Therefore, further

design of hardware offers a promising direction to seeking runtime improvement of genomics database

searching.

4.1. Interface with the Genomics Accelerator

We will follow the Open Vector Interface (OVI) defined in the European Processor Initiative (EPI) to

connect the out-of-order core with the VPU. This interface is open [7] and has the following input and

output signals:

Table 7. Vector Processing Unit Interface.

Size Signal Direction Description

1 issue_valid_i CORE -> VPU Indicates valid data on issue group

32 issue_instr_i CORE -> VPU Instruction fetched by the core

64 issue_data_i CORE -> VPU Scalar value from the core

4 issue_sb_id_i CORE -> VPU Scoreboard ID used to identify the instruction while

on the fly

40 issue_csr_i CORE -> VPU Vector CSR to be used by the VPU

1 dispatch_nxt_sen_i CORE -> VPU An instruction becomes next senior

1 dispatch_kill_i CORE -> VPU An instruction must be killed

4 dispatch_sb_id_i CORE -> VPU ID of the instruction in reference by the dispatch

group

1 memop_sync_end_i CORE -> VPU All data has been transmitted on current memory

operation

4 memop_sb_id_i CORE -> VPU ID of the instruction in reference by the memop

group

15 memop_vstart_vlfof_i CORE -> VPU vstart/vl value after memory operation. It can

contain only on f-o-f loads

https://github.com/semidynamics/OpenVectorInterface

21

1 load_valid_i CORE -> VPU Whether there is a valid data on the bus

1 load_mask_valid_i CORE -> VPU Whether the mask is valid

512 load_data_i CORE -> VPU Data fetched from memory

33 load_seq_id_i CORE -> VPU Sequence ID for a given chunk of data

64 load_mask_i CORE -> VPU Mask assigned to the load operation

1 store_credit_i CORE -> VPU Core returns a store credit

1 mask_idx_credit_i CORE -> VPU Core returns a mask credit

1 core_stall_o VPU -> CORE Request core stall from the VPU

1 issue_credit_o VPU -> CORE VPU returns a credit to the core

1 completed_vxsat_o VPU -> CORE Fixed-point accrued exception flags

1 completed_valid_o VPU -> CORE Valid data on completed group

1 completed_illegal_o VPU -> CORE Illegal instruction

4 completed_sb_id_o VPU -> CORE ID of the instruction in reference by the completed

group

5 completed_fflags_o VPU -> CORE Floating-point accrued exception flags

64 completed_dst_reg_o VPU -> CORE Result scalar value

14 completed_vstart_o VPU -> CORE vstart value in case of traps or retry

1 memop_sync_start_o VPU -> CORE VPU is ready to execute a memory op

1 store_valid_o VPU -> CORE Whether the store data is valid

512 store_data_o VPU -> CORE Data to store on memory

1 mask_idx_valid_o VPU -> CORE Whether item contains valid data

22

1 mask_idx_last_idx_o VPU -> CORE Whether the mask/index being transmitted is the last

one

65 mask_idx_item_o VPU -> CORE Mask/Index shared bus for indexed memory operations

In addition, the idea of including support to the VPU to perform direct memory accesses without

requiring the intervention of the out-of-order processor is explored; this implies that there is no need to

add an extra interface between the VPU and the memory hierarchy.

Independent memory accesses from accelerators without going through the out-of-order core relieve the

core's task load and reduce the memory penalties that hinder the processor's performance.

With this approach, the accelerators are able to share a specified cache level, where each handles the

data through scratchpad memory, a buffer, or a local cache, depending on the necessities for each

accelerator design.

A priority manager handles the order of the requesters dynamically to have a fair distribution of the total

bandwidth for every accelerator. If an accelerator modifies its priority level, this does not imply any

restriction to keep performing requests at any time. If a requester with a high priority is not making a

petition, others can use the unused bandwidth.

When a memory petition from any of the requesters causes an exception, this exception is bypassed to

the main processor to perform the corresponding service routine.

Currently, this strategy is under evaluation since it is necessary to perform a deeper analysis to determine

the cache level directly connected to the accelerators, depending on the data rate consumption. However,

for the first implementation, the out-of-order processor will perform the memory accesses to the L1

caches, including those requested by the accelerators.

4.2. Wavefront accelerator and FM-Index custom vector

instructions

Bio-computation kernels such as FM-Index search and pairwise alignment with Wavefront present

disjoint needs from the architectural hardware point of view. The nature of the FM-Index algorithm

presents random memory access, which will constantly cause memory access delays, causing the

algorithm to be memory bound. On the other hand, the Wavefront algorithm presents a compute-bound

behavior requiring several parallel computations, making it affordable for vector processing.

Nevertheless, both kernels are essential in genomics mapping applications and are intended to be run

on this hardware.

The FM-Index accelerator module will look to apply data prefetch techniques in order to improve as

much as possible the number of memory requests looking to consume the available memory bandwidth

without interfering with the main core execution. Moreover, we will also use custom vector instructions

to accelerate the index calculation.

23

For the Wavefront accelerator, an initial proposal is intended to extend the Vector Instruction ISA and

the OVI to issue specific instructions that will fetch complete memory regions that contain pairs of text

strings. Then, other computation instructions will use this data as operands. We will perform evaluations

of the advantages of using the Vector register file or other specific memory structures as a scratch-path

memory to this particular process. The evaluations could include system-level simulations and RTL

descriptions or how the hardware behavior will execute the specific accelerator custom instructions.

Finally, we will define the specifications of the ISA extension and the hardware microarchitecture.

5. Autonomous Navigation Accelerator

The goal is to design a particularly efficient hardware accelerator to perform object detection from

camera images by trading off accuracy and power consumption. The accelerator will speed-up the

operations related to the YOLO system [8], used by the Apollo AD framework [9] to handle camera-

based object detection. YOLO (You Only Look Once) is an award-winning, widely-used object

detection system. Its most computationally-intensive function is a Convolutional Neural Network

inference algorithm. However, the accelerator is conceived not to be restricted to this particular object

detection system and be usable for any application building on stochastic processes implemented with

matrix multiplications, thus neither requiring a specific standard for floating point numbers (e.g.

IEEE754) nor bit-level precision (e.g. some inaccuracies are acceptable).

A systolic-array-based architecture has been designed to this end, containing a 2D array of processing

elements, plus several peripheral blocks, as seen in the figure below.

Figure 15. Block diagram of a systolic-array-based architecture.

The Systolic Array block contains the 2D array of processing elements, which perform MAC operations

in parallel. The Activation and Weight Feeder modules provide the input streams to the Output

Stationary (OS) systolic array. The Output Buffer block handles the extraction of results from the array,

as well as the insertion of preload values to accumulate over, if needed. The Main Controller module

orchestrates the operation. Three independent and double-buffered SRAM blocks store the operands to

https://pjreddie.com/darknet/yolo/
https://apollo.auto/

24

load and the computation results. A set of configuration registers is used to control the accelerator,

accessible from a unified interface.

Thanks to the novel architecture of the feeder modules, the accelerator is able to natively handle both

general matrix-matrix multiplications (GEMM) and full convolutions, eliminating the need to convert

the convolutional tensors to a matrix equivalent via convolutional lowering (im2col algorithm), and the

software and memory overheads that come with it.

5.1. Interface with the Autonomous Navigation Accelerator

The full address space of the automotive accelerator will be accessible from the rest of the chip. This

includes the internal SRAM memories that hold the tensors/matrices to operate with and the

configuration registers of the accelerator. The processing core(s) will be able to configure the accelerator

and monitor its status using regular Instruction Set Architecture (ISA) instructions, such as load and

store operations. For optimal performance, the input and output data will be moved to and from the

internal (non-coherent) SRAM memories of the accelerator via DMA, even though they are accessible

by the core(s) as well.

A unified 32-bit interface with a 16-bit address will be used to access all the memory resources of the

accelerator. The 2 MSBs select the resource to access: the configuration registers (0), or each of the

three SRAM blocks (A, B or C; 1, 2 or 3 respectively). If the config registers are selected, the next 4

bits discriminate between different register regions.

Figure 16. Memory Addressing Control Scheme.

After configuration is complete and the input operands are ready, the computation will start when the

core sets the START signal (address=0x0). Upon finalization, the accelerator will set the DONE signal

(address=0x1) and optionally raise an interrupt signal. Both START and DONE will be accessible as

32-bit unsigned integers, thus the operation of starting and polling the accelerator will be atomic.

Double buffering will be used at the data and configuration levels, so the core can modify the

configuration values and the SRAM contents while the computation takes place without any side-

effects. Therefore, the core and the DMA can fetch the data needed for the next computation while the

accelerator is busy, enabling continuous operation. The new values written after a START signal is set

will only be effective after the next START rising edge.

25

To provide a fine-grained control over the accelerator and optimize hardware resources, the

configuration will be performed at a very low level: the register signals directly control hardware

parameters such as the step size and limit of the tensor readout counters. A software task will be in

charge of compiling the user parameters (convolution options and tensor sizes) into the appropriate

values for the configuration registers. Since these values only depend on the CNN to execute, this

operation can be performed at compile time and hence has zero performance cost during inference.

A detailed specification of the configuration signals, the address map and the compiling process will be

provided. The user settings that completely define these signals are as follows:

● Cw - Output Tensor Width: size of the x (width) dimension of the resulting tensor after the

convolution.

● Ch - Output Tensor Height: size of the y (height) dimension of the resulting tensor after the

convolution.

● Cc - Output Channels: number of output channels.

● Bw - Kernel Width: x-dimension of the convolutional kernel.

● Bh - Kernel Height: x-dimension of the convolutional kernel.

● Bc - Input Channels: number of input channels.

● Dilation: Dilation coefficient of the dilated convolution (atrous convolution). A value of 1

implements a regular convolution.

● Strides: Stride coefficient of the convolution.

● Xused - Used columns: number of columns of the systolic array used to map the computation

● Yused - Used rows: number of rows of the systolic array used to map the computation

● Preload Enable: a value of True enables the preload of values into the array accumulators to

start summing over.

Figure 17. Accelerator configuration signals.

Direct matrix-matrix multiplications, needed to implement the Fully-Connected (FC) layers of many

networks, can be implemented by generalizing the convolution operation.

26

6. Post-Quantum Cryptography Accelerator

The Post-Quantum (PQ) Cryptography accelerator is a co-processor designed by the WP2 team. This

hardware module is intended to foster the efficient use of PQ cryptographic schemes by speeding up

computational bottlenecks of the latter, as well as optimizing their memory access patterns to fit our

needs.

6.1. Interface with Post-Quantum Cryptography Accelerator

There may be several Key Encapsulation Mechanism (KEM) algorithms, or functionalities (i.e ciphertex

encapsulation/decapsulation, key generation, signature check, etc.) accelerated at the final SoC.

Therefore, depending on the individual acceleration needs, there may be several interfaces defined for

each acceleration scenario. The section below will try to depict as accurately as possible; a general

interface that reflects a possible acceleration scenario, based on the up-to-date research activities of the

WP2 team.

In Table 8 we summarize the main features of the accelerator interface with the core.

Table 8. Basic interface features for TCA and LCA modules.

Interface Features Comments

Accelerator type TCA & LCA

Control Interface SCRs, Memory mapped registers (via AXI Full/Lite)

Data Interface Register file, DMA coupled with Scratchpad

Data Coherency Common with core, ACP if needed

Memory coupling Common with core, Last Level Cache (LLC)

Programming model ISA custom instructions, Virtualization with device driver

operated by OS kernel

Computational Granularity: Current software profiling results have shown that the PQ KEM

algorithm acceleration will benefit both from a coarse-grained acceleration mode and a fine grained one.

For this reason, we will employ TCA and LCA design techniques equally.

Control Interface: Regardless of whether TCA or LCA unit, the computational module will need some

configuration registers to customize and initiate its computation. For the case of the TCA, we can add

custom SCR registers, while for an LCA module we can have memory mapped registers controlling the

configuration and the status of the accelerator.

Data Signals: As for the actual data the TCA accelerator will simply be supplied by the register file.

On the other hand, an AXI-Full interface can be utilized for the data transfer to/from the LCA

accelerator.

Regarding whether we will be able to exploit any inherent parallelism of the KEM, we can add Direct

Memory Access (DMA) support. Such a feature would free up the processor to perform independent

processes, while the accelerator is busy loading/saving its results to the memory hierarchy. Moreover,

27

the memory interface can be coherent or not. In our case, no coherency support will be needed, since

the tasks performed by the core while the accelerator is busy will operate on independent data. In the

case that we identify the need for coherency, though that would complicate the interface, we can add an

Accelerator Coherency Port (ACP) to the accelerator’s side. This interface will be operated via an AXI

link and connected to the DMA controller.

The connection of the LCA accelerator to the memory hierarchy will be at the Last Level Cache (LLC).

Any intermediate results, not needed by the core, can be temporarily saved to the internal private

scratchpad memory. The final result will be transferred to the common LLC for further continuation of

the KEM mechanism. The TCA will be using the core’s caches and MMU.

Programming Model: The LCA will likely be exposed to the OS via a device driver operated by the

kernel space. Virtualizing the device and keeping the control of the CU at the kernel space provides us

with portability across systems and an elevated level of security. The TCA will simply be exposed to

the ISA via custom ISA instructions. Compiler support should also be taken care of.

Code examples: In the following code we will try to give examples of both a TCA and LCA API as

seen by the developer. The TCA contains simple galois field arithmetic operations while the LCA

performs a more complex gaussian elimination on a given matrix.

Example #1 Galois Field Arithmetic acceleration (TCA)

The code below shows the galois field inversion function that uses the squaring (gf_sq()) and

multiplication (gf_mul()) functions. Their implementation is made in hardware as TCA.

gf gf_inv(gf in)

{

 gf tmp_11;

 gf tmp_1111;

 gf out = in;

 out = gf_sq(out);

 tmp_11 = gf_mul(out, in); // 11

 out = gf_sq(tmp_11);

 out = gf_sq(out);

 tmp_1111 = gf_mul(out, tmp_11); // 1111

 out = gf_sq(tmp_1111);

 out = gf_sq(out);

 out = gf_sq(out);

 out = gf_sq(out);

 out = gf_mul(out, tmp_1111); // 11111111

 out = gf_sq(out);

 out = gf_sq(out);

 out = gf_mul(out, tmp_11); // 1111111111

 out = gf_sq(out);

 out = gf_mul(out, in); // 11111111111

 return gf_sq(out); // 111111111110

}

Figure 18. Example #1 Galois Field Arithmetic acceleration (TCA).

28

Example #1 Gaussian elimination acceleration (LCA)

The code below generated the public key of the Classic McEliece KEM. The part of the gaussian

elimination of the matrix mat is being accelerated in a LCA manner. In the code we can see that the

developer uses the functions provided by the device driver (i.e gaussian_elimination_init(),

@security_lvl(), and gaussian_elimination()).

int pk_gen(unsigned char * pk, unsigned char * sk, uint32_t * perm)

{

 int i, j, k;

 int row, c;

 uint64_t buf[1 << GFBITS];

 unsigned char mat[GFBITS * SYS_T][SYS_N/8];

 unsigned char mask;

 unsigned char b;

 gf g[SYS_T+1]; // Goppa polynomial

 gf L[SYS_N]; // support

 gf inv[SYS_N];

 g[SYS_T] = 1;

 for (i = 0; i < SYS_T; i++) { g[i] = load2(sk); g[i] &= GFMASK; sk += 2; }

 for (i = 0; i < (1 << GFBITS); i++)

 {

 buf[i] = perm[i];

 buf[i] <<= 31;

 buf[i] |= i;

 }

 sort_63b(1 << GFBITS, buf);

 for (i = 0; i < (1 << GFBITS); i++) perm[i] = buf[i] & GFMASK;

 for (i = 0; i < SYS_N; i++) L[i] = bitrev(perm[i]);

 // filling the matrix

 root(inv, g, L);

 for (i = 0; i < SYS_N; i++)

 inv[i] = gf_inv(inv[i]);

 for (i = 0; i < PK_NROWS; i++)

 for (j = 0; j < SYS_N/8; j++)

 mat[i][j] = 0;

 for (i = 0; i < SYS_T; i++)

 {

 for (j = 0; j < SYS_N; j+=8)

 for (k = 0; k < GFBITS; k++)

 {

 b = (inv[j+7] >> k) & 1; b <<= 1;

 b |= (inv[j+6] >> k) & 1; b <<= 1;

 b |= (inv[j+5] >> k) & 1; b <<= 1;

 b |= (inv[j+4] >> k) & 1; b <<= 1;

 b |= (inv[j+3] >> k) & 1; b <<= 1;

 b |= (inv[j+2] >> k) & 1; b <<= 1;

 b |= (inv[j+1] >> k) & 1; b <<= 1;

 b |= (inv[j+0] >> k) & 1;

 mat[i*GFBITS + k][j/8] = b;

 }

 for (j = 0; j < SYS_N; j++){

 inv[j] = gf_mul(inv[j], L[j]);

 }

 }

 gaussian_elimination_init();

 @security_lvl(3);

 if (guassian_elimination(mat)== -1) return -1;

 for (i = 0; i < PK_NROWS; i++)

 memcpy(pk + i*PK_ROW_BYTES, mat[i] + PK_NROWS/8, PK_ROW_BYTES);

 return 0;

Figure 19. Example 2: full matrix multiplication.

29

In Figure 20 we picture the interface described above. Since we expect significant changes to be made

at the crypto accelerator design in the next phases of the WP2 the current visualization may not

accurately reflect the final implementation.

Figure 20. Generic view of the interface between the cryptographic accelerator(s) and the RISC-V core.

7. Conclusions

This document presents the different design proposals that will be the basis for achieving the DRAC

objectives.

First, the design of the Lagarto Ka processor is presented, a 2-way 64-bit out-of-order processor capable

of running the open-source ISA RISC-V. This processor includes in its design dynamic planning

techniques with which it is sought to achieve high performance and low energy consumption,

maintaining the trade-off between complexity and performance.

Coupled with the Lagarto Ka processor, a set of specialized accelerators are designed in the DRAC

project to facilitate the execution of specific applications. In this document we have defined all the

interfaces required to integrate such accelerators in the Lagarto Ka processor.

30

The first accelerator targets genomic analysis applications. Such accelerator is based on a novel high

performance parallel architecture for processing and analyzing genomic data at a large scale. These

applications are a relevant component in current and future personalized medicine applications: the

sequencing phase is an essential part of most genomic data analysis pipeline. The reduction in its

processing cost directly impacts the treatment of health data.

The final DRAC design also includes an accelerator for automotive applications with approximate

computing in FDSOI technology. The advent of autonomous driving requires relatively straightforward

(and inexpensive) hardware that gives a very high performance within a stringent consumption limit to

meet the requirements of automotive systems. The current high-performance systems that could provide

the necessary performance do so with very high consumption.

Thus, this project is focused on designing an accelerator that uses the approximate computation for

complex functions and the FDSOI technology (oriented to low consumption). It will be capable of

introducing alterations in the results when operating at low supply voltage; without worsening the global

precision of the prediction process. In particular, this project will design and implement the indicated

calculation unit and define its integration into future generations of the European processor, which

attacks the supercomputing and automotive segments.

At last, a cryptographic accelerator is integrated. In the DRAC project, different candidate schemes are

analyzed. Additionally, the corresponding RISC-V extensions will be designed to be incorporated into

the processor. Classical security techniques such as randomization will also be developed and

implemented to achieve a safe out-of-order processor and the implementation of hardware security

levels (rings) together with the hardware support of the virtualization mechanisms present in the set of

instructions for RISC-V.

Finally, a memory hierarchy capable of maintaining the correct coherence and consistency of the data

will be implemented through its different cache levels (L1, L2, main memory) and the accelerators

developed in this project. Likewise, the interfaces of the possible direct communication schemes with

the accelerators are proposed, in order to achieve an improvement in the final performance of the system.

31

8. References

[1] Xilinx, "AMBA AXI4 Interface Protocol", available on-line:

https://www.xilinx.com/products/intellectual-property/axi.html

[2] Xilinx, "KC705 Evaluation Board for the Kintex-7 FPGA".

[3] Xilinx, "VCU128 Evaluation Board".

[4] Carlos Rojas Morales, Master Thesis: "From FPGA to ASIC: A RISC-V processor experience",

Instituto Politécnico Nacional de México - Universidad Politècnica de Catalunya, 2019.

[5] Toshihiro Hanawa et al, "Tightly Coupled Accelerators Architecture for Minimizing

Communication Latency among Accelerators", 2013 IEEE International Symposium on Parallel &

Distributed Processing, Workshops and PhD Forum, USA, 2013.

[6] Luca Piccolboni et al, "PAGURUS: Low-Overhead Dynamic Information Flow Tracking on

Loosely Coupled Accelerators", IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, Vol. 37 (11), Nov 2018.

[7] SemiDynamics, "AVISPADO-VPU Interface", available on-line:

https://github.com/semidynamics/OpenVectorInterface

[8] YOLO: Real-Time Object Detection, available on-line: https://pjreddie.com/darknet/yolo/

[9] Apolo: Smart Transportation Solutions, available on-line: https://apollo.auto/

https://www.xilinx.com/products/intellectual-property/axi.html
https://github.com/semidynamics/OpenVectorInterface
https://pjreddie.com/darknet/yolo/
https://apollo.auto/

