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1. Lagarto Ka: Out-of-order General Purpose 

Processor 

The Lagarto Ka out-of-order general purpose core designed in the DRAC project is planned to be a 2-

way 64-bit out-of-order (OoO) superscalar core that implements the RISC-V instruction set architecture. 

This core is coupled to different accelerators specialized in emerging applications: a vector processing 

unit, a bioinformatics accelerator, a post-quantum cryptographic accelerator and an autonomous 

navigation accelerator. Section 1 describes the architecture of the out-or-order design, while Section 2 

describes the interface with the memory hierarchy. Section 3 describes the three envisioned ways to 

incorporate accelerators to the out-of-order core. Finally, Sections 4-6 describe the different interfaces 

with the envisioned accelerators in the DRAC project. Figure 1 shows an example of the configuration 

with the accelerators with the Lagarto Ka out-of-order core. 

 

 
Figure 1. Lagarto Ka out-of-order core insights. 

 

The Lagarto Ka microarchitecture is shaped by two main blocks: a sequential front-end, and an out-of-

order back-end. On the front-end, the core fetches and issues two instructions each clock cycle, and is 

able to execute speculative datapaths, resolving instruction predictions by including a branch predictor 

coupled with a simplified recovery mechanism to handle mispredictions. 

 

The instructions dispatched to the back-end of the Lagarto Ka are stored into different instruction 

queues, which are able to host up to 32 instructions. The design of the queues is focused on reducing 

energy consumption. In the first version of the design, the core is configured with a 5-instruction issue 

width, matching the instruction queues included; in consequence, this parameter can change to provide 

support for other accelerators. 

 

The instruction execution is performed by different functional units compounded with a bypassing logic 

technique to effectively broadcast the source operands for dependent instructions. To preserve program 

order among the instructions in-flight and guarantee core recovery to a previous state, a 64-entry fully 

distributed reorder buffer is included. Finally, a group commitment mechanism is required into the back-

end, looking for restoring the program order. 
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Table 1. Lagarto Ka out-of-order core parameters. 

Feature Parameter 

L1 instruction cache 16 KB 

L1 data cache 32 KB 

L2 cache size 256 KB 

Fetch-width 2 instructions 

Branch predictor 128 entries 

Issue-width 5 instructions 

Register File 128 registers 

Integer ALU latency 1 clock cycle 

ROB entries 128 

Recovery pages 1 

 

Table 1 shows a more detailed specification of the parameters that are initially considered for the design 

of the core. Additionally, Figure 2 shows a general block diagram of the microarchitecture to implement. 

 

 
Figure 2. General overview of the Lagarto Ka out-of-order microarchitecture. 
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In order to achieve a proper program execution, the microarchitecture for both the core and the 

accelerators follows the specifications of the different RISC-V ISA extensions used. Table 2 describes 

the general features of the core and each accelerator, as well as the RISC-V extensions considered for 

its design. 

 

Table 2. Lagarto Ka and accelerators features. 

Architecture specification Version Features 

Lagarto Ka out-of-order RISC-V I, M, A, H 

extensions 

2-way 64-bit out-of-order architecture 

Post-quantum cryptography 

accelerator 

RISC-V Custom extension Loosely and tightly coupled accelerators. ISA custom 

instructions, virtualization with device driver operated by 

OS kernel. 

Autonomous navigation 

accelerator 

RISC-V Custom extension Loosely coupled accelerator. Systolic array with 

approximate compute ALUs. 

Genomics accelerator: 

Vector Processing Unit 

RISC-V Vector (V) 

extension version 0.7.1 

4-lane 512-bit integer and floating-point vector 

architecture; FM-Index and WFA vector support 

Genomics accelerator: 

FM-Index accelerator  

RISC-V Custom extension Context virtualization support 

Genomics accelerator: 

Wavefront accelerator 

RISC-V Custom extension Loosely Coupled Accelerator 

Multilane parallel execution along with on-chip memory 

structures 

 

1.1. Hypervisor support (RISC-V H extension) 

The Hypervisor Extension aims to improve virtualization performance, mainly by reducing the 

frequency of traps that need to be handled by the Host OS. The approach the RISC-V specification 

defines is to virtualize the supervisor mode (S mode),  changing  the  existing  supervisor  mode into an 

Hypervisor-extended supervisor mode (HS mode) and adding both virtual user mode (US mode) and  

virtual  supervisor  mode  (VS  mode). Additionally, the address translation mechanism is augmented 

with a second stage. This new setup virtualizes the memory and the memory mapped I/O devices for 

the guest OS. This extension is being developed as part of WP2. 

1.1.1. Trap Handling 

RISC-V features a trap delegation mechanism that allows different privilege levels to handle interrupts 

and exceptions instead of the M-mode. This is done by selecting which traps are delegated to a lower 

privilege level, going from M to HS to VS to VU if user interrupts are enabled. 

1.1.2. Two-Stage Address Translation 

When virtualization is enabled, all memory accesses go through two stages. In the first one, the virtual 

address is translated into a guest physical address. This stage is known as VS-stage. Afterwards, this 

address is translated again to a supervisor physical address. This is known as the G-stage. In this stage, 

all accesses are considered U-mode accesses, even those performed on VS-mode data structures; a guest 

page-fault must be handled by either M or HS and cannot be relegated further. 
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2. Memory Hierarchy Description of the Out-of-

Order Processor 

The memory system is in charge of supplying a constant stream of instructions to the pipeline, as well 

as managing data memory accesses (load/store), both performed based on the virtual address previously 

computed. For this, a memory hierarchy has to be included, designed to be able to support several 

requests; these requests could come from the Lagarto Ka out-of-order core, along with the accelerators. 

2.1. On-chip memory hierarchy 

The memory hierarchy for the Lagarto Ka is composed of a 4-way 16KB instruction cache and a 4-way 

16KB data cache in level 1, both coupled to an 8-way and 64KB shared cache in a superior level (LLC).   

 

The processor chip accesses main memory with several alternative interfaces for memory on the same 

PC board as the processor chip, or remote DDR memory on an FPGA board through a custom link. The 

different interfaces are explained below. 

 

Table 3. Memory hierarchy features. 

Instruction Cache Data Cache 

● 64 sets, 4-way 

● 16 instructions per set (64B cache lines) 

● Total size 16KB 

● 8-entry TLB 

● 4-way 16KB 

● Non-blocking, with configurable # of MSHR 

● 64B cache lines 

● 8-entry TLB 

LLC 

● 128 sets, 8 ways 

● 16 words (32 bits) per set (64KB) 

● Total size 64 KB 

● Accepts up to 2 concurrent requests 

Other features 

First level caches are Virtually Indexed Physically Tagged (VIPT). 

Caches are inclusive. 

Random replacement policy using lower bits. 

Page size: 1 GB 

Coherence protocol: MESI (a directory is used to maintain coherence, this is located in the LLC). 
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Table 4. Memory hierarchy latencies. 

Status Latency 

Hit IL1  3 cycles 

Hit DL1  3 cycles 

Miss IL2  20 cycles 

Miss DL2  22 cycles 

 

Finally, the communication between the core and the level 1 instruction and data caches is defined as 

shown in the following figures. 

 

 
Figure 3. General overview of the control signals and data buses from the core to the Instruction Cache. 

 

Figure 3 shows the data flow from the Lagarto Ka (core) to the Instruction Cache (iCache), while the 

data flow in the opposite direction, from the Instruction Cache to the Lagarto Ka, is shown in Figure 4. 

The communication is performed through data buses (in blue) and control signals (in red), keeping the 

information clearly separated. Table 5 describes in detail these interfaces. 

 

 
Figure 4. General overview of the control signals and data buses from the Instruction Cache to the core. 
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Table 5. Instruction cache memory signal interface definition. 

Size Signal Direction Description 

12 icache_req_bits_idx CORE->IMEM Index of the requested address 

28 icache_req_bits_vpn CORE->IMEM VPN of the requested address 

2 icache_req_bits_thread_id CORE->IMEM Thread identifier 

1  icache_req_valid CORE->IMEM A valid request 

1 icache_req_bits_kill CORE->IMEM Kill request in flight 

1 icache_invalidate CORE->IMEM Invalidate active cache line 

128 icache_resp_bits_datablock IMEM->CORE Cache line delivery 

40 icache_resp_vaddr IMEM->CORE Requested address 

2 icache_resp_thread_id IMEM->CORE Applicant thread 

1 icache_resp_valid IMEM->CORE A valid delivery or exception 

1 icache_resp_xcpt_if IMEM->CORE An exception 

1 icache_req_ready IMEM->CORE Cache ready to accept requests  

 

 

Figure 5 shows the data buses that the Lagarto Ka uses to send data to the Data Cache (dCache). These 

buses not only contain the data computed by the core to be stored into the cache, but also include the 

memory operation type to be performed (load, store or atomic), the memory address, and the instruction 

tag identifier. 
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Figure 5. General overview of the data buses from the core to the Data Cache. 

 

 
Figure 6. General overview of the control signals from the core to the Data Cache. 

 

Figure 6 shows the control signals tied to the data buses that send information to the Data Cache. These 

signals indicate to the Data Cache when a request is valid, or whether it has to be discarded.  

 

 
Figure 7. General overview of the control signals and data buses from the data cache to the core. 

 

Finally, Figure 7 shows the data buses and the control signals sent to the core from the Data Cache. This 

information is received by the Load/Store Queue to determine whether it is possible to send a new 

request, or it is necessary to wait for the memory to be ready; similarly, the Load/Store Queue 

determines when a request must be resent or discarded, or if it has produced an exception. Table 6 

describes in detail the signals of this interface. 
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Table 6. Data Cache memory signal interface definition. 

Size Signal Direction Description 

1 dmem_ordered_i DMEM -> ROB Indicates that the memory is busy 

1 dmem_req_ready_i DMEM -> ROB Set to ‘1’ when the dcache is able to accept a 

new request. 

64 dmem_resp_bits_data_subw_i DMEM -> ROB Data input  bus 

1 dmem_resp_bits_has_data_i DMEM -> ROB When is set to “1” together with a 

dmem_resp_valid_i indicates valid data in the 

dmem_resp_bits_data_subw_i signal. 

1 dmem_resp_bits_nack_i CORE -> DMEM If true (1), indicates that the memory request 

must be issued again from the LSQ to the D-Cache 

8 dmem_resp_bits_tag_i CORE -> DMEM The tag is used as an ID of the instruction. 

1 dmem_resp_valid_i CORE -> DMEM Response valid from the dcache. This can be 

signaled 2 or more cycles after a request was 

done but not before. 

1 dmem_xcpt_ma_st_i CORE -> DMEM Misaligned store exception 

1 dmem_xcpt_ma_ld_i CORE -> DMEM Misaligned load exception 

1 dmem_xcpt_pf_st_i CORE -> DMEM Store page fault exception 

1 dmem_xcpt_pf_ld_i CORE -> DMEM Load page fault exception 

1 dmem_req_valid_o CORE -> DMEM Request valid to the dcache 

4 dmem_op_type_o CORE -> DMEM Data bit length 

5 dmem_req_cmd_o CORE -> DMEM Contains the memory command, such as 00100 for 

AMOSWAP, 01011 for AMOAND, and so on. 

64 dmem_req_bits_data_o CORE -> DMEM Store/amo data output 

40 dmem_req_bits_addr_o CORE -> DMEM Memory request address 

8 dmem_req_bits_tag_o CORE -> DMEM 7-bit rob entry used as ID to identify the owner 

of the request 
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1 dmem_req_invalidate_lr_o CORE -> DMEM Set when exception 

1 dmem_req_bits_kill_o CORE -> DMEM Kill in-flight instructions 

2.2. Main memory access on the board 

The main memory is considered as a 1 GB memory, in one or several modules external to the chip. 

There are several types of memory, from high bandwidth, like DDR, to moderate bandwidth, such as 

SDRAM or HyperRAM. 

Memories such DDR3 that operate at high frequencies require an appropriate physical interface PHY to 

ensure data is transmitted correctly. Therefore, memory modules directly connected to the processor 

chip are considered to be in the SDRAM and HyperRAM technologies. 

2.2.1. SDRAM 

The purpose of the SDRAM controller is to provide an alternative way to access main memory without 

requiring an auxiliary FPGA board. The controller is made for SDR (Single Data Rate) DRAM, which 

operates at lower frequencies (typically up to 166 MHz) and does not require any specific physical 

interface. 

Bandwidth depends on the operating frequency of the SDRAM and the width of the data bus. With an 

operating frequency of 166 MHz and a data bus of 16 bits, the bandwidth will be 332 MBps. The 

bandwidth scales linearly with the data bus (increasing the data bus to 32 bits, we obtain a bandwidth 

of 664 MBps). Capacity depends on the number of SDRAM chips used, each chip has up to 64 MB. 

Then, for example, 256 MB of memory can be obtained by using 4 SDRAM chips. 

The SDRAM controller acts as an interface between the SoC and the external memory. For one side, 

the controller communicates with the main processor using the AXI protocol and, on the other side, it 

contains the logic required to manage the accesses to the SDRAM, generate the appropriate commands 

and control the refresh sequence. Additionally, the SDRAM controller contains an asynchronous FIFO 

used to synchronize the data between different clock domains, such as from the main clock to the 

SDRAM clock. 

2.2.2. HyperRAM 

 

The Cypress HyperRAM Self-Refresh Dynamic Random Access Memory (DRAM) is one of the few 

memories on the market that has a reduced number of bus signals. While DDR3 memories have 240 

pins, the HyperRAM only has 12 pins. Also, the DDR3 memory controller IP fills a significant space 

on the floor plan if we want to introduce it on the ASIC, and it is protected from modifications with a 

costly license. Similar to the SDRAM controller, one of the main purposes of the HyperRAM controller 

is to provide an alternative way to access the main memory without requiring an auxiliary FPGA board. 

 

With the memory of 1.8V, we can accomplish a maximum frequency of 166MHz, achieving then, a 

maximum bandwidth of 333MBps within 8-bit data bus. About the size of each module, there are two 

types, the 64Mb (8MB) one and the 128Mb (16MB) one.  It should be noted that these memory modules 

can be merged together into a larger block. For example, we can achieve 512Mb (64MB) grouping four 

modules of 128Mb each. 
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This memory has the Double-Data Rate (DDR) characteristic. Additionally, we can do sequential burst 

transactions, meaning that for a given address, a consecutive number of bytes (more than four bytes) are 

read or written in a single transaction. 

 

Like the SDRAM controller, AXI4 is the communication protocol to interface the core and the 

memory modules. Below in Figure 8, we can observe a brief outline of the logic used.  

 

 
 

Figure 8. Block diagram of core to/from HyperRAM modules data path. 

 

As the size of the bus of the core interface is about 128 bits, and the size of the bus of the HyperRAM 

AXI wrapper is 32 bits, a buffer was inserted between them in order to solve the change of bus size. 

Also, the HyperRAM AXI Wrapper contains FIFOs and a Finite State Machine (FSM) to arbitrate the 

sequence of commands to send to the HyperRAM Controller.  

2.3. Main memory access on accessory FPGA board 

High bandwidth memory standards such as DDR3 and DDR4 need a physical interface (PHY) on the 

chip, which is very expensive to acquire and very costly to develop internally. However, commercial 

FPGA evaluation boards (e.g. [2] or [3]) contain DDR memory on the board, connected to the FPGA 

device that integrates the necessary PHY and controller. In order to access DDR memory on the FPGA 

board, two interfaces between the out-of-order processor chip and the FPGA are defined (see Figure 9 

below): 

 

● Packetizer: a low bandwidth interface [5]. 

● SerDes: high bandwidth serial interface (HBWIF). 

 

https://www.xilinx.com/support/documentation/boards_and_kits/kc705/ug810_KC705_Eval_Bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vcu128/ug1302-vcu128-eval-bd.pdf
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Figure 9. Block diagram of the connection to main memory on FPGA using the two interfaces: serders on the left 

of the FMC, packetizer on the right handside. Additional on-board memory SDRAM and HyperRAM are 

considered (interfaces not included in the schema) [5]. 

2.3.1. Packetizer interface [5] 

The lack of a physical interface for a DDR3 memory controller can be overcome by the design of a 

custom interface to communicate with memory using the physical DDR3 memory from an external 

FPGA board. Memory access is then split into two parts: one on the FPGA that contains the memory 

controllers to access the main memory, and a second one on the chip containing the core and rest of the 

uncore system, including L1 and L2 cache memories. 

 

Both parts are connected with an FPGA Mezzanine Card (FMC) connector. Based on our empirical 

evaluation, we achieved a steady transfer rate operating at 50 MHz using an FMC cable with a 128-bit 

bus split into 4 transactions of 32 bits each. 

2.3.2. SerDes interface 

Another method to connect the FPGA containing DDR controllers and PHY is using high speed serial 

interfaces, which can achieve data rates close to 10 Gbps per channel. This interface needs two 

components integrated in the processor chip: 
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● PMA (Physical Media Access): PHY interface capable of transmitting in the Gbps range. This 

is an analog high frequency component that uses differential signaling: two wires for TX and 

two wires for RX in each channel. 

● PCS (Physical Coding Sublayer): Digital layer interfacing between the PHY and the L2 

memory. 

 

On the FPGA side, a compatible PHY I/O (GTX or GTY depending on the FPGA device on the board) 

communicate with the on-chip PHY through an FMC connector, and are linked to the digital control 

that manages the DDR controller and PHY (see Figure 9). Several lanes can be considered to increase 

data throughput. 

 

PMA architecture and specification 

 

 
Figure 10. Connection between PMA and PCS. 

 

The PMA is a serializer-deserializer designed to work at 8 Gbps with a parallel bit width of 32. It 

contains an 8 GHz PLL. 

 

 
Figure 11. Architecture of the PMA. 
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PCS architecture 

The architecture of a single PCS lane is depicted in the image below.  

 

 
Figure 12. Architecture of the PCS. 

 

Tx User Data (TxUD) and Rx User Data (RxUD) are Axi-Stream busses, composed of the following 

signals: 

 

● tdata [63:0]: payload; 

● tvalid: triggers valid data; 

● tready: only on the TX side, determines if the Slave is able to receive data in a given clock 

cycle; 

● tlast: last element of a packet; 

● tkeep, tuser, tid: not mandatory; 

 

Incoming data in the TxUD bus are firstly sent to the 64b/66b encoder, that adds 2-bit of encoding 

information to the 64-bit payload (e.g., setting them to 10 in case of idle packets, and to 01 in case of 

data packets). According to the 64b/66b specs, the 64-bit related to TxUD data are then scrambled, 

allowing to ensure an adequate number of 0-1 (or 1-0) transitions of the serial data, thus preventing the 

CDR losses in the receiver side. 

Scrambled data, together with the unscrambled 2-bit sync signal created by the encoder, are sent to the 

66/32 gearbox, whose purpose is to convert the 66-bit bus in the format expected by the PMA layer (i.e., 

32-bit).  

 

On the receiver side, the 32-bit bus from the PMA layer is converted in a 66-bit format by the 32/66 

gearbox, and aligned by the comma aligner. The comma aligner checks that, for a given time of iterations 

(e.g., for 64 66-bit packets), the two MSBs of the 66-bit signal contain encoded data (e.g., bit 65 and 66 

must be equal to 10 for 64 incoming packets). Otherwise, the aligner sends a shift_req to the 32/66 

gearbox, which shifts the incoming data by 1 bit. The gearbox should have an internal shift register of 

256 bits, to allow selecting the whole word of 66 bits without overflows in the shift mechanism. Aligned 

data are descrambled and decoded to create the RxUD 64-bit bus. 
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3. Integrating Multiple Accelerators in an Out-of-

Order Processor 

 

The process of integrating an accelerator with the processor is as crucial as the actual design of the 

accelerator. Certain design choices have to be made early on, in the design phase in order to interface 

the hardware accelerator to the core in an efficient, yet resource savvy manner. Following are the two 

main ways that an accelerator can be coupled with the main processing element. 

3.1. Tightly Coupled Accelerators (TCA) to the Processor’s 

Pipeline 

 

The first case of the interfaces is tightly-coupled [5] to the core's pipeline accelerator. This scenario adds 

one or more computational units (CUs) to the execution stage of the pipeline. The CUs share key-

resources with the core (i.e. register file and MMU) and finish their computation in a few clock cycles. 

They rarely have internal memory, since they use the L1 cache of the core, but do use configuration 

registers to customize their computation. The resulting wider pipeline is able to execute the new 

computations performed by the CUs, provided that they are exposed to the Instruction Set Architecture 

(ISA) as new instructions. This case is depicted in Figure 13. 

 

  
Figure 13. Tightly coupled accelerators (TCA) to the processor’s pipeline. 

 

The interface with the core is the ISA extension itself, since the hardware addition needs no more than 

a bigger multiplexer for the output of the execution stage and a modification at the decoding stage 

reflecting the addition of the new instructions. Such alterations of the ISA are well documented for the 

RISC-V ISA case. Additionally, separate ISA extensions provided by the RISC-V community (i.e vector 

and bit manipulation extensions) can be used in this acceleration scenario as long as there is an 

underlying hardware module performing the computations. Special care has to be taken at the software 

stack, since the ISA extension requires modifications at the compiler. Moreover, timing closure of the 

accelerator has to be taken care of, so as not to interfere with the critical path of the core, thus affecting 

the operating frequency. The latter issue also puts constraints on the area budget of the accelerator. 
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3.2. Loosely Coupled Accelerators (LCA) from the Processor’s 

Pipeline 

 

The case of a LCA best describes a hardware module that performs coarse-grained computations, thus 

consuming a bigger area budget than the TCA. Their computation takes at least tens of clock cycles to 

finish. The LCA is usually equipped with its own internal private memory (i.e scratchpad) in order to 

hold data values and store intermediate results. Typically, the accelerator is also coupled with either the 

Last Level Cache (LLC) of the core or the DRAM itself in order to load and store the results it computes, 

also making them available to the core. That interface can either be coherent or not. This communication 

is often handled by a Direct Memory Access (DMA) mechanism, thus preventing the stall of the 

computational core as long as the hardware accelerator performs the memory access. The latter is taken 

care of by the DMA controller (DMAC) that resides in the hardware accelerator and is part of its 

interface with the core. A generic view of a LCA can be seen in Figure 14. 

 

 
 

Figure 14. Loosely Coupled Accelerators (LCA) from the processor’s pipeline. 

 

Unlike the TCA, a LCA has to be controlled from the kernel space by a device driver. The user 

application issues a system call that invokes this driver and takes care of moving data to the accelerator 

and configuring its computation. When the computation finishes, the accelerator issues an interrupt, 

signaling the end of the respective computation. That communication can be based on a polled or 

interrupt-based interface from the core’s perspective. An interrupt service routine (ISR) might induce a 

timing overhead, but it lets the core perform separate computations or even shut down, while the 

accelerator performs its own computations. Polling offers the quickest response and less timing 

overhead, but keeps the core busy waiting for the results. 

 

Regarding the programming model of the accelerator in the LCA scenario, there are several ways it can 

be constructed. In a simple embedded processor scenario there might be no OS service and the 

accelerator is used in bare metal with ad-hoc custom protocols. In the case we have an OS enabled 

system, the accelerator can either be a memory mapped device controlled by the user space or the kernel 

can be issuing commands to the accelerator via virtualization of the latter and the use of a device driver. 
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4. Genomics Accelerator 

To search sequence databases that may contain billions of sequences, different genomic algorithms are 

implemented, these algorithms become computationally expensive. Consequently, in this design, we 

focused on accelerating the most fundamental genomics algorithms by offloading the computationally 

repeated portion of the algorithms to custom hardware instructions. These simple modifications 

accelerate the algorithm runtime compared to the pure software implementation. Therefore, further 

design of hardware offers a promising direction to seeking runtime improvement of genomics database 

searching. 

4.1. Interface with the Genomics Accelerator 

We will follow the Open Vector Interface (OVI) defined in the European Processor Initiative (EPI) to 

connect the out-of-order core with the VPU. This interface is open [7] and has the following input and 

output signals: 

 

Table 7. Vector Processing Unit Interface. 

Size Signal Direction Description 

1 issue_valid_i CORE -> VPU Indicates valid data on issue group 

32 issue_instr_i CORE -> VPU Instruction fetched by the core 

64 issue_data_i CORE -> VPU Scalar value from the core  

4 issue_sb_id_i CORE -> VPU Scoreboard ID used to identify the instruction while 

on the fly 

40 issue_csr_i CORE -> VPU Vector CSR to be used by the VPU 

1 dispatch_nxt_sen_i CORE -> VPU An instruction becomes next senior 

1 dispatch_kill_i CORE -> VPU An instruction must be killed 

4 dispatch_sb_id_i CORE -> VPU ID of the instruction in reference by the dispatch 

group 

1 memop_sync_end_i CORE -> VPU All data has been transmitted on current memory 

operation 

4 memop_sb_id_i CORE -> VPU ID of the instruction in reference by the memop 

group 

15 memop_vstart_vlfof_i CORE -> VPU vstart/vl value after memory operation. It can 

contain only on f-o-f loads 

https://github.com/semidynamics/OpenVectorInterface
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1 load_valid_i CORE -> VPU Whether there is a valid data on the bus 

1 load_mask_valid_i CORE -> VPU Whether the mask is valid 

512 load_data_i CORE -> VPU Data fetched from memory 

33 load_seq_id_i CORE -> VPU Sequence ID for a given chunk of data 

64 load_mask_i CORE -> VPU Mask assigned to the load operation 

1 store_credit_i CORE -> VPU Core returns a store credit 

1 mask_idx_credit_i CORE -> VPU Core returns a mask credit 

1 core_stall_o VPU -> CORE Request core stall from the VPU 

1 issue_credit_o VPU -> CORE VPU returns a credit to the core 

1 completed_vxsat_o VPU -> CORE Fixed-point accrued exception flags 

1 completed_valid_o VPU -> CORE Valid data on completed group  

1 completed_illegal_o VPU -> CORE Illegal instruction 

4 completed_sb_id_o VPU -> CORE ID of the instruction in reference by the completed 

group 

5 completed_fflags_o VPU -> CORE Floating-point accrued exception flags 

64 completed_dst_reg_o VPU -> CORE Result scalar value 

14 completed_vstart_o VPU -> CORE vstart value in case of traps or retry 

1 memop_sync_start_o VPU -> CORE VPU is ready to execute a memory op 

1 store_valid_o VPU -> CORE Whether the store data is valid 

512 store_data_o VPU -> CORE Data to store on memory 

1 mask_idx_valid_o VPU -> CORE Whether item contains valid data 
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1 mask_idx_last_idx_o VPU -> CORE Whether the mask/index being transmitted is the last 

one  

65 mask_idx_item_o VPU -> CORE Mask/Index shared bus for indexed memory operations 

 

In addition, the idea of including support to the VPU to perform direct memory accesses without 

requiring the intervention of the out-of-order processor is explored; this implies that there is no need to 

add an extra interface between the VPU and the memory hierarchy.  

 

Independent memory accesses from accelerators without going through the out-of-order core relieve the 

core's task load and reduce the memory penalties that hinder the processor's performance.  

 

With this approach, the accelerators are able to share a specified cache level, where each handles the 

data through scratchpad memory, a buffer, or a local cache, depending on the necessities for each 

accelerator design. 

 

A priority manager handles the order of the requesters dynamically to have a fair distribution of the total 

bandwidth for every accelerator.  If an accelerator modifies its priority level, this does not imply any 

restriction to keep performing requests at any time. If a requester with a high priority is not making a 

petition, others can use the unused bandwidth.  

 

When a memory petition from any of the requesters causes an exception, this exception is bypassed to 

the main processor to perform the corresponding service routine. 

 

Currently, this strategy is under evaluation since it is necessary to perform a deeper analysis to determine 

the cache level directly connected to the accelerators, depending on the data rate consumption. However, 

for the first implementation, the out-of-order processor will perform the memory accesses to the L1 

caches, including those requested by the accelerators. 

 

4.2. Wavefront accelerator and FM-Index custom vector 

instructions 

Bio-computation kernels such as FM-Index search and pairwise alignment with Wavefront present 

disjoint needs from the architectural hardware point of view. The nature of the FM-Index algorithm 

presents random memory access, which will constantly cause memory access delays, causing the 

algorithm to be memory bound. On the other hand, the Wavefront algorithm presents a compute-bound 

behavior requiring several parallel computations, making it affordable for vector processing. 

Nevertheless, both kernels are essential in genomics mapping applications and are intended to be run 

on this hardware.    

 

The FM-Index accelerator module will look to apply data prefetch techniques in order to improve as 

much as possible the number of memory requests looking to consume the available memory bandwidth 

without interfering with the main core execution. Moreover, we will also use custom vector instructions 

to accelerate the index calculation.  
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For the Wavefront accelerator, an initial proposal is intended to extend the Vector Instruction ISA and 

the OVI to issue specific instructions that will fetch complete memory regions that contain pairs of text 

strings. Then, other computation instructions will use this data as operands. We will perform evaluations 

of the advantages of using the Vector register file or other specific memory structures as a scratch-path 

memory to this particular process. The evaluations could include system-level simulations and RTL 

descriptions or how the hardware behavior will execute the specific accelerator custom instructions. 

Finally, we will define the specifications of the ISA extension and the hardware microarchitecture. 

5. Autonomous Navigation Accelerator 

The goal is to design a particularly efficient hardware accelerator to perform object detection from 

camera images by trading off accuracy and power consumption. The accelerator will speed-up the 

operations related to the YOLO system [8], used by the Apollo AD framework [9] to handle camera-

based object detection. YOLO (You Only Look Once) is an award-winning, widely-used object 

detection system. Its most computationally-intensive function is a Convolutional Neural Network 

inference algorithm. However, the accelerator is conceived not to be restricted to this particular object 

detection system and be usable for any application building on stochastic processes implemented with 

matrix multiplications, thus neither requiring a specific standard for floating point numbers (e.g. 

IEEE754) nor bit-level precision (e.g. some inaccuracies are acceptable). 

A systolic-array-based architecture has been designed to this end, containing a 2D array of processing 

elements, plus several peripheral blocks, as seen in the figure below.  

 

Figure 15. Block diagram of a systolic-array-based architecture. 

The Systolic Array block contains the 2D array of processing elements, which perform MAC operations 

in parallel. The Activation and Weight Feeder modules provide the input streams to the Output 

Stationary (OS) systolic array. The Output Buffer block handles the extraction of results from the array, 

as well as the insertion of preload values to accumulate over, if needed. The Main Controller module 

orchestrates the operation. Three independent and double-buffered SRAM blocks store the operands to 

https://pjreddie.com/darknet/yolo/
https://apollo.auto/
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load and the computation results. A set of configuration registers is used to control the accelerator, 

accessible from a unified interface. 

Thanks to the novel architecture of the feeder modules, the accelerator is able to natively handle both 

general matrix-matrix multiplications (GEMM) and full convolutions, eliminating the need to convert 

the convolutional tensors to a matrix equivalent via convolutional lowering (im2col algorithm), and the 

software and memory overheads that come with it. 

5.1. Interface with the Autonomous Navigation Accelerator 

The full address space of the automotive accelerator will be accessible from the rest of the chip. This 

includes the internal SRAM memories that hold the tensors/matrices to operate with and the 

configuration registers of the accelerator. The processing core(s) will be able to configure the accelerator 

and monitor its status using regular Instruction Set Architecture (ISA) instructions, such as load and 

store operations. For optimal performance, the input and output data will be moved to and from the 

internal (non-coherent) SRAM memories of the accelerator via DMA, even though they are accessible 

by the core(s) as well. 

 

A unified 32-bit interface with a 16-bit address will be used to access all the memory resources of the 

accelerator. The 2 MSBs select the resource to access: the configuration registers (0), or each of the 

three SRAM blocks (A, B or C; 1, 2 or 3 respectively). If the config registers are selected, the next 4 

bits discriminate between different register regions. 

 

 
Figure 16. Memory Addressing Control Scheme. 

 

After configuration is complete and the input operands are ready, the computation will start when the 

core sets the START signal (address=0x0). Upon finalization, the accelerator will set the DONE signal 

(address=0x1) and optionally raise an interrupt signal. Both START and DONE will be accessible as 

32-bit unsigned integers, thus the operation of starting and polling the accelerator will be atomic. 

 

Double buffering will be used at the data and configuration levels, so the core can modify the 

configuration values and the SRAM contents while the computation takes place without any side-

effects. Therefore, the core and the DMA can fetch the data needed for the next computation while the 

accelerator is busy, enabling continuous operation. The new values written after a START signal is set 

will only be effective after the next START rising edge. 
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To provide a fine-grained control over the accelerator and optimize hardware resources, the 

configuration will be performed at a very low level: the register signals directly control hardware 

parameters such as the step size and limit of the tensor readout counters. A software task will be in 

charge of compiling the user parameters (convolution options and tensor sizes) into the appropriate 

values for the configuration registers. Since these values only depend on the CNN to execute, this 

operation can be performed at compile time and hence has zero performance cost during inference. 

 

A detailed specification of the configuration signals, the address map and the compiling process will be 

provided. The user settings that completely define these signals are as follows: 

 

● Cw - Output Tensor Width: size of the x (width) dimension of the resulting tensor after the 

convolution. 

● Ch - Output Tensor Height: size of the y (height) dimension of the resulting tensor after the 

convolution. 

● Cc - Output Channels: number of output channels. 

● Bw - Kernel Width: x-dimension of the convolutional kernel. 

● Bh - Kernel Height: x-dimension of the convolutional kernel. 

● Bc - Input Channels: number of input channels. 

● Dilation: Dilation coefficient of the dilated convolution (atrous convolution). A value of 1 

implements a regular convolution. 

● Strides: Stride coefficient of the convolution. 

● Xused - Used columns: number of columns of the systolic array used to map the computation 

● Yused - Used rows: number of rows of the systolic array used to map the computation 

● Preload Enable: a value of True enables the preload of values into the array accumulators to 

start summing over. 

 

 
Figure 17. Accelerator configuration signals. 

 

Direct matrix-matrix multiplications, needed to implement the Fully-Connected (FC) layers of many 

networks, can be implemented by generalizing the convolution operation. 
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6. Post-Quantum Cryptography Accelerator 

The Post-Quantum (PQ) Cryptography accelerator is a co-processor designed by the WP2 team. This 

hardware module is intended to foster the efficient use of PQ cryptographic schemes by speeding up 

computational bottlenecks of the latter, as well as optimizing their memory access patterns to fit our 

needs.  

6.1. Interface with Post-Quantum Cryptography Accelerator 

There may be several Key Encapsulation Mechanism (KEM) algorithms, or functionalities (i.e ciphertex 

encapsulation/decapsulation, key generation, signature check, etc.) accelerated at the final SoC. 

Therefore, depending on the individual acceleration needs, there may be several interfaces defined for 

each acceleration scenario. The section below will try to depict as accurately as possible; a general 

interface that reflects a possible acceleration scenario, based on the up-to-date research activities of the 

WP2 team. 

 

In Table 8 we summarize the main features of the accelerator interface with the core. 

 

Table 8. Basic interface features for TCA and LCA modules. 

Interface Features Comments 

Accelerator type TCA & LCA 

Control Interface SCRs, Memory mapped registers (via AXI Full/Lite) 

Data Interface Register file, DMA coupled with Scratchpad 

Data Coherency Common with core, ACP if needed 

Memory coupling Common with core, Last Level Cache (LLC) 

Programming model ISA custom instructions, Virtualization with device driver 

operated by OS kernel 

 

Computational Granularity: Current software profiling results have shown that the PQ KEM 

algorithm acceleration will benefit both from a coarse-grained acceleration mode and a fine grained one. 

For this reason, we will employ TCA and LCA design techniques equally.     

 

Control Interface: Regardless of whether TCA or LCA unit, the computational module will need some 

configuration registers to customize and initiate its computation. For the case of the TCA, we can add 

custom SCR registers, while for an LCA module we can have memory mapped registers controlling the 

configuration and the status of the accelerator.  

 

Data Signals: As for the actual data the TCA accelerator will simply be supplied by the register file. 

On the other hand, an AXI-Full interface can be utilized for the data transfer to/from the LCA 

accelerator.  

 

Regarding whether we will be able to exploit any inherent parallelism of the KEM, we can add Direct 

Memory Access (DMA) support. Such a feature would free up the processor to perform independent 

processes, while the accelerator is busy loading/saving its results to the memory hierarchy. Moreover, 



  
  

 
27 

the memory interface can be coherent or not. In our case, no coherency support will be needed, since 

the tasks performed by the core while the accelerator is busy will operate on independent data. In the 

case that we identify the need for coherency, though that would complicate the interface, we can add an 

Accelerator Coherency Port (ACP) to the accelerator’s side. This interface will be operated via an AXI 

link and connected to the DMA controller. 

 

The connection of the LCA accelerator to the memory hierarchy will be at the Last Level Cache (LLC). 

Any intermediate results, not needed by the core, can be temporarily saved to the internal private 

scratchpad memory. The final result will be transferred to the common LLC for further continuation of 

the KEM mechanism.  The TCA will be using the core’s caches and MMU.  

 

Programming Model: The LCA will likely be exposed to the OS via a device driver operated by the 

kernel space. Virtualizing the device and keeping the control of the CU at the kernel space provides us 

with portability across systems and an elevated level of security. The TCA will simply be exposed to 

the ISA via custom ISA instructions. Compiler support should also be taken care of. 

 

Code examples: In the following code we will try to give examples of both a TCA and LCA API as 

seen by the developer. The TCA contains simple galois field arithmetic operations while the LCA 

performs a more complex gaussian elimination on a given matrix. 

 

Example #1 Galois Field Arithmetic acceleration (TCA) 

The code below shows the galois field inversion function that uses the squaring (gf_sq()) and 

multiplication (gf_mul()) functions. Their implementation is made in hardware as TCA. 

 

gf gf_inv(gf in) 

{ 

   gf tmp_11; 

   gf tmp_1111; 

  

   gf out = in; 

  

   out = gf_sq(out); 

   tmp_11 = gf_mul(out, in); // 11 

  

   out = gf_sq(tmp_11); 

   out = gf_sq(out); 

   tmp_1111 = gf_mul(out, tmp_11); // 1111 

  

   out = gf_sq(tmp_1111); 

   out = gf_sq(out); 

   out = gf_sq(out); 

   out = gf_sq(out); 

   out = gf_mul(out, tmp_1111); // 11111111 

  

   out = gf_sq(out); 

   out = gf_sq(out); 

   out = gf_mul(out, tmp_11); // 1111111111 

  

   out = gf_sq(out); 

   out = gf_mul(out, in); // 11111111111 

  

   return gf_sq(out); // 111111111110 

} 

Figure 18. Example #1 Galois Field Arithmetic acceleration (TCA). 
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Example #1 Gaussian elimination acceleration (LCA) 

The code below generated the public key of the Classic McEliece KEM. The part of the gaussian 

elimination of the matrix mat is being accelerated in a LCA manner. In the code we can see that the 

developer uses the functions provided by the device driver (i.e gaussian_elimination_init(), 

@security_lvl(), and gaussian_elimination()). 

 

int pk_gen(unsigned char * pk, unsigned char * sk, uint32_t * perm) 

{ 

   int i, j, k; 

   int row, c; 

   uint64_t buf[ 1 << GFBITS ]; 

   unsigned char mat[ GFBITS * SYS_T ][ SYS_N/8 ]; 

   unsigned char mask; 

   unsigned char b; 

  

   gf g[ SYS_T+1 ]; // Goppa polynomial 

   gf L[ SYS_N ]; // support 

   gf inv[ SYS_N ]; 

  

    g[ SYS_T ] = 1; 

  

   for (i = 0; i < SYS_T; i++) { g[i] = load2(sk); g[i] &= GFMASK; sk += 2; } 

  

   for (i = 0; i < (1 << GFBITS); i++) 

   { 

       buf[i] = perm[i]; 

       buf[i] <<= 31; 

       buf[i] |= i; 

   } 

  

   sort_63b(1 << GFBITS, buf); 

  

   for (i = 0; i < (1 << GFBITS); i++) perm[i] = buf[i] & GFMASK; 

   for (i = 0; i < SYS_N;         i++) L[i] = bitrev(perm[i]); 

  

   // filling the matrix 

  

   root(inv, g, L); 

       

   for (i = 0; i < SYS_N; i++) 

       inv[i] = gf_inv(inv[i]); 

  

   for (i = 0; i < PK_NROWS; i++) 

   for (j = 0; j < SYS_N/8; j++) 

       mat[i][j] = 0; 

  

   for (i = 0; i < SYS_T; i++) 

   { 

       for (j = 0; j < SYS_N; j+=8) 

       for (k = 0; k < GFBITS;  k++) 

       { 

           b  = (inv[j+7] >> k) & 1; b <<= 1; 

           b |= (inv[j+6] >> k) & 1; b <<= 1; 

           b |= (inv[j+5] >> k) & 1; b <<= 1; 

           b |= (inv[j+4] >> k) & 1; b <<= 1; 

           b |= (inv[j+3] >> k) & 1; b <<= 1; 

           b |= (inv[j+2] >> k) & 1; b <<= 1; 

           b |= (inv[j+1] >> k) & 1; b <<= 1; 

           b |= (inv[j+0] >> k) & 1; 

  

           mat[ i*GFBITS + k ][ j/8 ] = b; 

       } 

       for (j = 0; j < SYS_N; j++){ 

           inv[j] = gf_mul(inv[j], L[j]); 

       } 

  

   } 

   gaussian_elimination_init(); 

   @security_lvl(3); 

   if (guassian_elimination(mat)== -1) return -1; 

 

   for (i = 0; i < PK_NROWS; i++) 

       memcpy(pk + i*PK_ROW_BYTES, mat[i] + PK_NROWS/8, PK_ROW_BYTES); 

  

   return 0; 

Figure 19. Example 2: full matrix multiplication. 
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In Figure 20 we picture the interface described above. Since we expect significant changes to be made 

at the crypto accelerator design in the next phases of the WP2 the current visualization may not 

accurately reflect the final implementation. 

 

 
 

Figure 20. Generic view of the interface between the cryptographic accelerator(s) and the RISC-V core. 

7. Conclusions 

This document presents the different design proposals that will be the basis for achieving the DRAC 

objectives. 

 

First, the design of the Lagarto Ka processor is presented, a 2-way 64-bit out-of-order processor capable 

of running the open-source ISA RISC-V. This processor includes in its design dynamic planning 

techniques with which it is sought to achieve high performance and low energy consumption, 

maintaining the trade-off between complexity and performance. 

 

Coupled with the Lagarto Ka processor, a set of specialized accelerators are designed in the DRAC 

project to facilitate the execution of specific applications. In this document we have defined all the 

interfaces required to integrate such accelerators in the Lagarto Ka processor. 
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The first accelerator targets genomic analysis applications. Such accelerator is based on a novel high 

performance parallel architecture for processing and analyzing genomic data at a large scale. These 

applications are a relevant component in current and future personalized medicine applications: the 

sequencing phase is an essential part of most genomic data analysis pipeline. The reduction in its 

processing cost directly impacts the treatment of health data.  

 

The final DRAC design also includes an accelerator for automotive applications with approximate 

computing in FDSOI technology. The advent of autonomous driving requires relatively straightforward 

(and inexpensive) hardware that gives a very high performance within a stringent consumption limit to 

meet the requirements of automotive systems. The current high-performance systems that could provide 

the necessary performance do so with very high consumption.  

 

Thus, this project is focused on designing an accelerator that uses the approximate computation for 

complex functions and the FDSOI technology (oriented to low consumption). It will be capable of 

introducing alterations in the results when operating at low supply voltage; without worsening the global 

precision of the prediction process. In particular, this project will design and implement the indicated 

calculation unit and define its integration into future generations of the European processor, which 

attacks the supercomputing and automotive segments. 

 

At last, a cryptographic accelerator is integrated. In the DRAC project, different candidate schemes are 

analyzed. Additionally, the corresponding RISC-V extensions will be designed to be incorporated into 

the processor. Classical security techniques such as randomization will also be developed and 

implemented to achieve a safe out-of-order processor and the implementation of hardware security 

levels (rings) together with the hardware support of the virtualization mechanisms present in the set of 

instructions for RISC-V. 

 

Finally, a memory hierarchy capable of maintaining the correct coherence and consistency of the data 

will be implemented through its different cache levels (L1, L2, main memory) and the accelerators 

developed in this project. Likewise, the interfaces of the possible direct communication schemes with 

the accelerators are proposed, in order to achieve an improvement in the final performance of the system. 
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