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1. Lagarto Ka: Out-of-order General Purpose
Processor

The Lagarto Ka out-of-order general purpose core designed in the DRAC project is planned to be a
2-way 64-bit out-of-order (OoO) superscalar core that implements the RISC-V instruction set
architecture. This core is coupled to different accelerators specialized in emerging applications: a
vector processing unit, a bioinformatics accelerator, a post-quantum cryptographic accelerator and an
autonomous navigation accelerator. Section 1 describes the architecture of the out-or-order design,
while Section 2 describes the interface with the memory hierarchy. Section 3 describes the three
envisioned ways to incorporate accelerators to the out-of-order core. Finally, Sections 4-6 describe the
different interfaces with the envisioned accelerators in the DRAC project. Figure 1 shows an example
of the configuration with the accelerators with the Lagarto Ka out-of-order core.

Figure 1. Lagarto Ka out-of-order core insights.

The Lagarto Ka microarchitecture is shaped by two main blocks: a sequential front-end, and an
out-of-order back-end. On the front-end, the core fetches and issues two instructions each clock cycle,
and is able to execute speculative datapaths, resolving instruction predictions by including a branch
predictor coupled with a simplified recovery mechanism to  to handle mispredictions.

The instructions dispatched to the back-end of the Lagarto Ka are stored into different instruction
queues, which are able to host up to 32 instructions. The design of the queues is focused on reducing
energy consumption. In the first version of the design, the core is configured with a 5-instruction issue
width, matching the instruction queues included; in consequence, this parameter can change to provide
support for other accelerators.

The instruction execution is performed by different functional units compounded with a bypassing
logic technique to effectively broadcast the source operands for dependent instructions. To preserve
program order among the instructions in-flight and guarantee core recovery to a previous state, a
64-entry fully distributed reorder buffer is included. Finally, a group commitment mechanism is
required into the back-end, looking for restoring the program order.
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Table 1. Lagarto Ka out-of-order core parameters.

Feature Parameter

L1 instruction cache 16 KB

L1 data cache 32 KB

L2 cache size 256 KB

Fetch-width 2 instructions

Branch predictor 128 entries

Issue-width 5 instructions

Register File 128 registers

Integer ALU latency 1 clock cycle

ROB entries 128

Recovery pages 1

Table 1 shows a more detailed specification of the parameters that are initially considered for the
design of the core. Additionally, Figure 2 shows a general block diagram of the microarchitecture to
implement.

Figure 2. General overview of the Lagarto Ka out-of-order microarchitecture.

In order to achieve a proper program execution, the microarchitecture for both the core and the
accelerators follows the specifications of the different RISC-V ISA extensions used. Table 2 describes
the general features of the core and each accelerator, as well as the RISC-V extensions considered for
its design.
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Table 2. Lagarto Ka and accelerators features.

Architecture specification Version Features

Lagarto Ka out-of-order RISC-V I, M, A, H
extensions

2-way 64-bit out-of-order architecture

Post-quantum cryptography
accelerator

RISC-V Custom extension Loosely and tightly coupled accelerators. ISA custom
instructions, virtualization with device driver operated by
OS kernel.

Autonomous navigation
accelerator

RISC-V Custom extension Loosely coupled accelerator. Systolic array with
approximate compute ALUs.

Genomics accelerator:
Vector Processing Unit

RISC-V Vector (V)
extension version 0.7.1

4-lane 512-bit integer and floating-point vector
architecture; FM-Index and WFA vector support

Genomics accelerator:
FM-Index accelerator

RISC-V Custom extension Context virtualization support

Genomics accelerator:
Wavefront accelerator

RISC-V Custom extension Loosely Coupled Accelerator
Multilane parallel execution along with on-chip memory
structures

1.1. Hypervisor support (RISC-V H extension)
The Hypervisor Extension aims to improve virtualization performance, mainly by reducing the
frequency of traps that need to be handled by the Host OS. The approach the RISC-V specification
defines is to virtualize the supervisor mode (S mode), changing the existing supervisor mode
into an Hypervisor-extended supervisor mode (HS mode) and adding both virtual user mode (US
mode) and virtual supervisor mode (VS mode). Additionally, the address translation mechanism is
augmented with a second stage. This new setup virtualizes the memory and the memory mapped I/O
devices for the guest OS. This extension is being developed as part of WP2.

1.1.1. Trap Handling
RISC-V features a trap delegation mechanism that allows different privilege levels to handle interrupts
and exceptions instead of the M-mode. This is done by selecting which traps are delegated to a lower
privilege level, going from M to HS to VS to VU if user interrupts are enabled.

1.1.2. Two-Stage Address Translation
When virtualization is enabled, all memory accesses go through two stages. In the first one,
the virtual address is translated into a guest physical address. This stage is known as VS-stage.
Afterwards, this address is translated again to a supervisor physical address. This is known as the
G-stage. In the G-stage, all accesses are considered U-mode accesses, even those performed on
VS-mode data structures; a guest page-fault must be handled by either M or HS and cannot be
relegated further.
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Figure 3. General overview of Kameleon: Lagarto Ka and Sargantana core, memory hierarchy and accelerators
interconected. The main memory on FPGA using the two interfaces: serders on the right of the FMC, packetizer
on the left handside. Additional on-board memory SDRAM and HyperRAM are considered (interfaces not
included in the schema) [5].

2. Memory Hierarchy Description of the
Out-of-Order Processor

The memory system is in charge of supplying a constant stream of instructions to the pipeline, as well
as managing data memory accesses (load/store), both performed based on the virtual address
previously computed. For this, a memory hierarchy has to be included, designed to be able to support
several requests; these requests could come from the Lagarto Ka out-of-order core, along with the
accelerators.

2.1. On-chip memory hierarchy
The memory hierarchy for the Lagarto Ka is composed of a 4-way 32KB instruction cache and a
4-way 32KB data cache in level 1, both coupled to an 8-way and 64KB shared cache in a superior
level (LLC).

The processor chip accesses main memory with several alternative interfaces for memory on the same
PC board as the processor chip, or remote DDR memory on an FPGA board through a custom link.
The different interfaces are explained below.
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Table 3. Memory hierarchy features.

Instruction Cache Data Cache

● 64 sets, 4-way
● 16 instructions per set (64B cache lines)

● Total size 32KB
● 8-entry TLB

● 4-way 32KB
● Non-blocking, with configurable # of MSHR
● 64B cache lines
● 8-entry TLB

LLC

● 128 sets, 8 ways
● 16 words (32 bits) per set (64KB)
● Total size 64 KB
● Accepts up to 2 concurrent requests

Other features

First level caches are Virtually Indexed Physically Tagged (VIPT).
Caches are inclusive.
Random replacement policy using lower bits.
Page size: 1 GB
Coherence protocol: MESI (a directory is used to maintain coherence, this is located in the LLC).

Table 4. Memory hierarchy latencies.

Status Latency

Hit IL1 3 cycles

Hit DL1 3 cycles

Miss IL2 20 cycles

Miss DL2 22 cycles

Finally, the communication between the core and the level 1 instruction and data caches is defined as
shown in the following figures.

Figure 4. General overview of the control signals and data buses from the core to the instruction cache.

Figure 4 shows the data flow from the Lagarto Ka (core) to the Instruction Cache (icache), while
Figure 5 shows the data flow in the opposite direction, from the Instruction Cache to the Lafarto Ka.

9



The communications is performed through data buses (in blue) and control signals (in red), keeping
the information clearly separated. Table 5 describes in detail these interfaces.

Figure 5. General overview of the control signals and data buses from the instruction cache to the core.

Table 5. Instruction cache memory signal interface definition.

Size Signal Direction Description

12 icache_req_bits_idx CORE->IMEM Index of the requested address

28 icache_req_bits_vpn CORE->IMEM VPN of the requested address

2 icache_req_bits_thread_id CORE->IMEM Thread identifier

1 icache_req_valid CORE->IMEM A valid request

1 icache_req_bits_kill CORE->IMEM Kill request in flight

1 icache_invalidate CORE->IMEM Invalidate active cache line

128 icache_resp_bits_datablock IMEM->CORE Cache line delivery

40 icache_resp_vaddr IMEM->CORE Requested address

2 icache_resp_thread_id IMEM->CORE Applicant thread

1 icache_resp_valid IMEM->CORE A valid delivery or exception

1 icache_resp_xcpt_if IMEM->CORE An exception

1 icache_req_ready IMEM->CORE Cache ready to accept requests

Figure 5 shows the data buses that the Lagarto Ka uses to send data to the Data Cache (dCache). These
buses not only contain the data computed by the core to be stored into the cache, but also include the
memory operation type to be performed (load, store or atomic), the memory address, and the
instruction tag identifier.
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Figure 6. General overview of the data buses from the core to the data cache.

Figure 7. General overview of the control signals from the core to the data cache.

Figure 7 shows the control signals tied to the data buses that send information to the Data Cache.
These signals indicate to the Data Cache when a request is valid, or whether it has to be discarded.

Figure 8. General overview of the control signals and data buses from the data cache to the core.

Finally, Figure 8 shows the data buses and the control signals sent to the core from the Data Cache.
This information is received by the Load/Store Queue to determine whether it is possible to send a
new request, or it is necessary to wait for the memory to be ready; similarly, the Load/Store Queue
determines when a request must be resent or discarded, or if it has produced an exception. Table 6
describes in detail the signals of this interface.
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Table 6. Data cache memory signal interface definition.

Size Signal Direction Description

1 dmem_ordered_i DMEM -> ROB Indicates that the memory is busy

1 dmem_req_ready_i DMEM -> ROB Set to ‘1’ when the dcache is able to accept a
new request.

64 dmem_resp_bits_data_subw_i DMEM -> ROB Data input  bus

1 dmem_resp_bits_has_data_i DMEM -> ROB When is set to “1” together with a
dmem_resp_valid_i indicates valid data in the
dmem_resp_bits_data_subw_i signal.

1 dmem_resp_bits_nack_i CORE -> DMEM If true (1), indicates that the memory request
must be issued again from the LSQ to the D-Cache

8 dmem_resp_bits_tag_i CORE -> DMEM The tag is used as an ID of the instruction.

1 dmem_resp_valid_i CORE -> DMEM Response valid from the dcache. This can be
signaled 2 or more cycles after a request was
done but not before.

1 dmem_xcpt_ma_st_i CORE -> DMEM Misaligned store exception

1 dmem_xcpt_ma_ld_i CORE -> DMEM Misaligned load exception

1 dmem_xcpt_pf_st_i CORE -> DMEM Store page fault exception

1 dmem_xcpt_pf_ld_i CORE -> DMEM Load page fault exception

1 dmem_req_valid_o CORE -> DMEM Request valid to the dcache

4 dmem_op_type_o CORE -> DMEM Data bit length

5 dmem_req_cmd_o CORE -> DMEM Contains the memory command, such as 00100 for
AMOSWAP, 01011 for AMOAND, and so on.

64 dmem_req_bits_data_o CORE -> DMEM Store/amo data output

40 dmem_req_bits_addr_o CORE -> DMEM Memory request address

8 dmem_req_bits_tag_o CORE -> DMEM 7-bit rob entry used as ID to identify the owner
of the request

1 dmem_req_invalidate_lr_o CORE -> DMEM Set when exception

1 dmem_req_bits_kill_o CORE -> DMEM Kill in-flight instructions
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2.2. Main memory access on the board
The main memory is considered as a 1 GB memory, in one or several modules external to the chip.
There are several types of memory, from high bandwidth, like DDR, to moderate bandwidth, such as
SDRAM or HyperRAM.

Memories such DDR3 that operate at high frequencies require an appropriate physical interface PHY
to ensure data is transmitted correctly. Therefore, memory modules directly connected to the processor
chip are considered to be in the SDRAM and HyperRAM technologies.

2.2.1. SDRAM

The purpose of the SDRAM controller is to provide an alternative way to access main memory
without requiring an auxiliary FPGA board. The controller is made for SDR (Single Data Rate)
DRAM, which operates at lower frequencies (typically up to 166 MHz) and does not require any
specific physical interface.

Bandwidth depends on the operating frequency of the SDRAM and the width of the data bus. With an
operating frequency of 166 MHz and a data bus of 16 bits, the bandwidth will be 332 MBps. The
bandwidth scales linearly with the data bus (increasing the data bus to 32 bits, we obtain a bandwidth
of 664 MBps). Capacity depends on the number of SDRAM chips used, each chip has up to 64 MB.
Then, for example, 256 MB of memory can be obtained by using 4 SDRAM chips.

The SDRAM controller acts as an interface between the SoC and the external memory. For one side,
the controller communicates with the main processor using the AXI protocol and, on the other side, it
contains the logic required to manage the accesses to the SDRAM, generate the appropriate
commands and control the refresh sequence. Additionally the SDRAM controller contains an
asynchronous FIFO used to synchronize the data between different clock domains, such as from the
main clock to the SDRAM clock.

2.2.2. HyperRAM

The Cypress HyperRAM Self-Refresh Dynamic Random Access Memory (DRAM) is one of the few
memories on the market that has a reduced number of bus signals. While DDR3 memories have 240
pins, the HyperRAM only has 12 pins. Also, the DDR3 memory controller IP fills a significant space
on the floor plan if we want to introduce it on the ASIC, and it is protected from modifications with a
costly license. Similar to the SDRAM controller, one of the main purposes of the HyperRAM
controller is to provide an alternative way to access the main memory without requiring an auxiliary
FPGA board.

With the memory of 1.8V, we can accomplish a maximum frequency of 166MHz, achieving then, a
maximum bandwidth of 333MBps within 8-bit data bus. About the size of each module, there are two
types, the 64Mb (8MB) one and the 128Mb (16MB) one. It should be noted that these memory
modules can be merged together into a larger block. For example, we can achieve 512Mb (64MB)
grouping four modules of 128Mb each.

This memory has the Double-Data Rate (DDR) characteristic. Additionally, we can do sequential burst
transactions, meaning that for a given address, a consecutive number of bytes (more than four bytes)
are read or written in a single transaction.
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Like the SDRAM controller, AXI4 is the communication protocol to interface the core and the
memory modules. Below in Figure 9, we can observe a brief outline of the logic used.

Figure 9. Block diagram of core to/from HyperRAM modules data path.

As the size of the bus of the core interface is about 128 bits, and the size of the bus of the HyperRAM
AXI wrapper is 32 bits, a buffer was inserted between them in order to solve the change of bus size.
Also, the HyperRAM AXI Wrapper contains FIFOs and a Finite State Machine (FSM) to arbitrate the
sequence of commands to send to the HyperRAM Controller.

2.3. Main memory access on accessory FPGA board
High bandwidth memory standards such as DDR3 and DDR4 need a physical interface (PHY) on the
chip, which is very expensive to acquire and very costly to develop internally. However, commercial
FPGA evaluation boards (e.g. [2] or [3]) contain DDR memory on the board, connected to the FPGA
device that integrates the necessary PHY and controller. In order to access DDR memory on the FPGA
board, two interfaces between the out-of-order processor chip and the FPGA are defined (see Figure
3):

● Packetizer: a low bandwidth interface [5].
● SerDes: high bandwidth serial interface (HBWIF).

2.3.1. Packetizer interface [5]
The lack of a physical interface for a DDR3 memory controller can be overcome by the design of a
custom interface to communicate with memory using the physical DDR3 memory from an external
FPGA board. Memory access is then split into two parts: one on the FPGA that contains the memory
controllers to access the main memory, and a second one on the chip containing the core and rest of
the uncore system, including L1 and L2 cache memories.

Both parts are connected with an FPGA Mezzanine Card (FMC) connector. Based on our empirical
evaluation, we achieved a steady transfer rate operating at 50 MHz using an FMC cable with a
128-bit bus split into 4 transactions of 32 bits each.

2.3.2. SerDes interface
Another method to connect the FPGA containing DDR controllers and PHY is using high speed serial
interfaces, which can achieve data rates close to 10 Gbps per channel. This interface needs two
components integrated in the processor chip:
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● PMA (Physical Media Access): PHY interface capable of transmitting in the Gbps range. This
is an analog high frequency component that uses differential signaling: two wires for TX and
two wires for RX in each channel.

● PCS (Physical Coding Sublayer): Digital layer interfacing between the PHY and the L2
memory..

On the FPGA side, a compatible PHY I/O (GTX or GTY depending on the FPGA device on the
board) communicate with the on-chip PHY through an FMC connector, and are linked to the digital
control that manages the DDR controller and PHY (see Figure 9). Several lanes can be considered to
increase data throughput.

PMA architecture and specification

Figure 10. Connection between PMA and PCS.

Figure 11. Architecture of the PMA.

The PMA is a serializer-deserializer designed to work at 8 Gbps with a parallel bit width of 32. It
contains an 8 GHz PLL.
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PCS architecture

The architecture of a single PCS lane is depicted in the image below.

Figure 12. Architecture of the PCS.

Tx User Data (TxUD) and Rx User Data (RxUD) are Axi-Stream busses, composed of the following
signals:

● tdata [63:0]: payload;
● tvalid: triggers valid data;

● tready: only on the TX side, determines if the Slave is able to receive data in a given clock
cycle;

● tlast: last element of a packet;
● tkeep, tuser, tid: not mandatory;

Incoming data in the TxUD bus are firstly sent to the 64b/66b encoder, that adds 2-bit of encoding
information to the 64-bit payload (e.g., setting them to 10 in case of idle packets, and to 01 in case of
data packets). According to the 64b/66b specs, the 64-bit related to TxUD data are then scrambled,
allowing to ensure an adequate number of 0-1 (or 1-0) transitions of the serial data, thus preventing the
CDR losses in the receiver side.

Scrambled data, together with the unscrambled 2-bit sync signal created by the encoder, are sent to the
66/32 gearbox, whose purpose is to convert the 66-bit bus in the format expected by the PMA layer
(i.e., 32-bit).

On the receiver side, the 32-bit bus from the PMA layer is converted in a 66-bit format by the 32/66
gearbox, and aligned by the comma aligner. The comma aligner checks that, for a given time of
iterations (e.g., for 64 66-bit packets), the two MSBs of the 66-bit signal contain encoded data (e.g.,
bit 65 and 66 must be equal to 10 for 64 incoming packets). Otherwise, the aligner sends a shift_req to
the 32/66 gearbox, which shifts the incoming data by 1 bit. The gearbox should have an internal shift
register of 256 bits, to allow selecting the whole word of 66 bits without overflows in the shift
mechanism. Aligned data are descrambled and decoded to create the RxUD 64-bit bus.
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3. Integrating Multiple Accelerators in an
Out-of-Order Processor

The process of integrating an accelerator with the processor is as crucial as the actual design of the
accelerator. Certain design choices have to be made early on, in the design phase in order to interface
the hardware accelerator to the core in an efficient, yet resource savvy manner. Following are the two
main ways that an accelerator can be coupled with the main processing element.

3.1. Tightly Coupled Accelerators (TCA) to the Processor’s
Pipeline

The first case of the interfaces is tightly-coupled [5] to the core's pipeline accelerator. This scenario
adds one or more computational units (CUs) to the execution stage of the pipeline. The CUs share
key-resources with the core (i.e. register file and MMU) and finish their computation in a few clock
cycles. They rarely have internal memory, since they use the L1 cache of the core, but do use
configuration registers to customize their computation. The resulting wider pipeline is able to execute
the new computations performed by the CUs, provided that they are exposed to the Instruction Set
Architecture (ISA) as new instructions. This case is depicted in Figure 13.

Figure 13. Tightly coupled accelerators (TCA) to the processor’s pipeline.

The interface with the core is the ISA extension itself, since the hardware addition needs no more than
a bigger multiplexer for the output of the execution stage and a modification at the decoding stage
reflecting the addition of the new instructions. Such alterations of the ISA are well documented for the
RISC-V ISA case. Additionally, separate ISA extensions provided by the RISC-V community (i.e
vector and bit manipulation extensions) can be used in this acceleration scenario as long as there is an
underlying hardware module performing the computations. Special care has to be taken at the software
stack, since the ISA extension requires modifications at the compiler. Moreover, timing closure of the
accelerator has to be taken care of, so as not to interfere with the critical path of the core, thus
affecting the operating frequency. The latter issue also puts constraints on the area budget of the
accelerator.
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3.2. Loosely Coupled Accelerators (LCA) from the Processor’s
Pipeline

The case of a LCA best describes a hardware module that performs coarse-grained computations, thus
consuming a bigger area budget than the TCA. Their computation takes at least tens of clock cycles to
finish. The LCA is usually equipped with its own internal private memory (i.e scratchpad) in order to
hold data values and store intermediate results. Typically, the accelerator is also coupled with either
the Last Level Cache (LLC) of the core or the DRAM itself in order to load and store the results it
computes, also making them available to the core. That interface can either be coherent or not. This
communication is often handled by a Direct Memory Access (DMA) mechanism, thus preventing the
stall of the computational core as long as the hardware accelerator performs the memory access. The
latter is taken care of by the DMA controller (DMAC) that resides in the hardware accelerator and is
part of its interface with the core. A generic view of a LCA can be seen in Figure 14.

Figure 14. Loosely Coupled Accelerators (LCA) from the processor’s pipeline.

Unlike the TCA, a LCA has to be controlled from the kernel space by a device driver. The user
application issues a system call that invokes this driver and takes care of moving data to the
accelerator and configuring its computation. When the computation finishes, the accelerator issues an
interrupt, signaling the end of the respective computation. That communication can be based on a
polled or interrupt-based interface from the core’s perspective. An interrupt service routine (ISR)
might induce a timing overhead, but it lets the core perform separate computations or even shut down,
while the accelerator performs its own computations. Polling offers the quickest response and less
timing overhead, but keeps the core busy waiting for the results.

Regarding the programming model of the accelerator in the LCA scenario, there are several ways it
can be constructed. In a simple embedded processor scenario there might be no OS service and the
accelerator is used in bare metal with ad-hoc custom protocols. In the case we have an OS enabled
system, the accelerator can either be a memory mapped device controlled by the user space or the
kernel can be issuing commands to the accelerator via virtualization of the latter and the use of a
device driver.
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3.3. Interrupt Controller.
The different accelerators on the SoC will produce interrupts to notify the core that the data is already
computed. This interrupt mechanism will avoid the core to continuously pulling the accelerators for
knowing its status. Since there are several accelerators, we need a mechanism to process all the
interrupts.

In the RISC-V ISA exists the platform-level interrupt controller (PLIC). The PLIC multiplexes
various device interrupts onto the external interrupt lines of Hart contexts, with hardware support for
interrupt priorities. PLIC supports up-to 1023 interrupts (0 is reserved) and 15872 contexts, but the
actual number of interrupts and context depends on the PLIC implementation. One possible
implementation can be found in: https://github.com/pulp-platform/rv_plic/.

Figure 15. General overview of the interrupt controller (PLIC) interconnected with different RISC-V harts.

4. Genomics Accelerator
To search sequence databases that may contain billions of sequences, different genomic algorithms are
implemented, these algorithms become computationally expensive. Consequently, in this design, we
focused on accelerating the most fundamental genomics algorithms by offloading the computationally
repeated portion of the algorithms to custom hardware instructions. These simple modifications
accelerate the algorithm runtime compared to the pure software implementation. Therefore, further
design of hardware offers a promising direction to seeking runtime improvement of genomics
database searching.

4.1. Interface with the Genomics Accelerator
We will follow the Open Vector Interface (OVI) defined in the European Processor Initiative (EPI) to
connect the out-of-order core with the VPU. This interface is open [7] and has the following input and
output signals:

Table 7. Vector Processing Unit  Interface.
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Size Signal Direction Description

1 issue_valid_i CORE -> VPU Indicates valid data on issue group

32 issue_instr_i CORE -> VPU Instruction fetched by the core

64 issue_data_i CORE -> VPU Scalar value from the core

4 issue_sb_id_i CORE -> VPU Scoreboard ID used to identify the instruction while
on the fly

40 issue_csr_i CORE -> VPU Vector CSR to be used by the VPU

1 dispatch_nxt_sen_i CORE -> VPU An instruction becomes next senior

1 dispatch_kill_i CORE -> VPU An instruction must be killed

4 dispatch_sb_id_i CORE -> VPU ID of the instruction in reference by the dispatch
group

1 memop_sync_end_i CORE -> VPU All data has been transmitted on current memory
operation

4 memop_sb_id_i CORE -> VPU ID of the instruction in reference by the memop
group

15 memop_vstart_vlfof_i CORE -> VPU vstart/vl value after memory operation. It can
contain only on f-o-f loads

1 load_valid_i CORE -> VPU Whether there is a valid data on the bus

1 load_mask_valid_i CORE -> VPU Whether the mask is valid

512 load_data_i CORE -> VPU Data fetched from memory

33 load_seq_id_i CORE -> VPU Sequence ID for a given chunk of data

64 load_mask_i CORE -> VPU Mask assigned to the load operation

1 store_credit_i CORE -> VPU Core returns a store credit

1 mask_idx_credit_i CORE -> VPU Core returns a mask credit

1 core_stall_o VPU -> CORE Request core stall from the VPU

1 issue_credit_o VPU -> CORE VPU returns a credit to the core

1 completed_vxsat_o VPU -> CORE Fixed-point accrued exception flags

1 completed_valid_o VPU -> CORE Valid data on completed group

1 completed_illegal_o VPU -> CORE Illegal instruction

4 completed_sb_id_o VPU -> CORE ID of the instruction in reference by the completed
group

5 completed_fflags_o VPU -> CORE Floating-point accrued exception flags

64 completed_dst_reg_o VPU -> CORE Result scalar value

14 completed_vstart_o VPU -> CORE vstart value in case of traps or retry
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1 memop_sync_start_o VPU -> CORE VPU is ready to execute a memory op

1 store_valid_o VPU -> CORE Whether the store data is valid

512 store_data_o VPU -> CORE Data to store on memory

1 mask_idx_valid_o VPU -> CORE Whether item contains valid data

1 mask_idx_last_idx_o VPU -> CORE Whether the mask/index being transmitted is the last
one

65 mask_idx_item_o VPU -> CORE Mask/Index shared bus for indexed memory operations

In addition, the idea of including support to the VPU to perform direct memory accesses without
requiring the intervention of the out-of-order processor is explored; this implies that there is no need to
add an extra interface between the VPU and the memory hierarchy.

Independent memory accesses from accelerators without going through the out-of-order core relieve
the core's task load and reduce the memory penalties that hinder the processor's performance.

With this approach, the accelerators are able to share a specified cache level, where each handles the
data through scratchpad memory, a buffer, or a local cache, depending on the necessities for each
accelerator design.

A priority manager handles the order of the requesters dynamically to have a fair distribution of the
total bandwidth for every accelerator. If an accelerator modifies its priority level, this does not imply
any restriction to keep performing requests at any time. If a requester with a high priority is not
making a petition, others can use the unused bandwidth.

When a memory petition from any of the requesters causes an exception, this exception is bypassed to
the main processor to perform the corresponding service routine.

Currently, this strategy is under evaluation since it is necessary to perform a deeper analysis to
determine the cache level directly connected to the accelerators, depending on the data rate
consumption. However, for the first implementation, the out-of-order processor will perform the
memory accesses to the L1 caches, including those requested by the accelerators.

4.2. Wavefront accelerator and FM-Index custom vector
instructions

Bio-computation kernels such as FM-Index search and pairwise alignment with Wavefront present
disjoint needs from the architectural hardware point of view. The nature of the FM-Index algorithm
presents random memory access, which will constantly cause memory access delays, causing the
algorithm to be memory bound. On the other hand, the Wavefront algorithm presents a
compute-bound behavior requiring several parallel computations, making it affordable for vector
processing. Nevertheless, both kernels are essential in genomics mapping applications and are
intended to be run on this hardware.
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The FM-Index accelerator module will look to apply data prefetch techniques in order to improve as
much as possible the number of memory requests looking to consume the available memory
bandwidth without interfering with the main core execution. Moreover, we will also use custom vector
instructions to accelerate the index calculation.

For the Wavefront accelerator, an initial proposal is intended to extend the Vector Instruction ISA and
the OVI to issue specific instructions that will fetch complete memory regions that contain pairs of
text strings. Then, other computation instructions will use this data as operands. We will perform
evaluations of the advantages of using the Vector register file or other specific memory structures as a
scratch-path memory to this particular process. The evaluations could include system-level
simulations and RTL descriptions or how the hardware behavior will execute the specific accelerator
custom instructions. Finally, we will define the specifications of the ISA extension and the hardware
microarchitecture.

4.2.1 Wavefront accelerator

WFA accelerator has 2 AXI buses for the communications. One AXI Slave Lite is used for
configuring the accelerator and one AXI4 in master mode, which is controlled by an internal DMA, to
receive input data and send the result from/to the memory. The DMA is directly configured by the
WFA accelerator. WFA receives the DMA configurations through AxI Lite. Figure below shows the
configuration addresses of the WFA which are accessible by AXI Lite.

Figure below (left) shows the WFA subsystem and (right) shows the WFA accelerator.
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Figure 16. General overview of the WFA accelerator communication.

It is possible to have multiple WFA cores in the accelerator, each aligning one pair of sequences. One
decoder decodes the input data and distributes them among the WFAs. One collector collects the
results of the alignment and sends them back to the memory.

Figure 17 below shows one WFA core. Each core has multiple parallel computational sections and
memories to store intermediate data. The number of parallel lines is configurable (before
implementation) depending on the characteristic of the data set. The extend and compute are executed
iteratively until the end of alignment is reached. Then the backtrace module finds the correct
alignment path from end to start. The backtrace is optional in the accelerator and only implementable
for short reads. For long reads it should be done in the CPU. For short reads we need to perform more
tests to see which option is better (backtrace in CPU or in accelerator) in terms of performance.

Figure 17. General overview of the integration of the WFA accelerator in a core.
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5. Autonomous Navigation Accelerator
SAURIA (Systolic Array-based tensor Unit for aRtificial Intelligence Acceleration) is a hardware
accelerator designed at the BSC with the specific goal of efficient massively parallel execution of
Convolutional Neural Networks (CNNs). It is based on a systolic array architecture, containing a 2D
array of processing elements that perform Multiply-ACcumulate (MAC) operations in parallel.

In order to improve the performance and energy efficiency of the overall system, SAURIA features a
novel Data Feeder architecture that performs convolutional lowering (a.k.a. im2col) to the input and
weight tensors internally. This allows the accelerator to reduce the transactions to external memory by
a factor of 2 compared to a software-based im2col solution.

Figure 18. Block diagram of the SAURIA accelerator (depicted as 3x3, we will have 8x16).

SAURIA can be integrated as a LCA (see section 3.2.). It uses AXI4-Lite for configuration and AXI4
to communicate with the memory system. A DMA engine is used to efficiently transfer data to and
from the memory system. This DMA block is internal to the accelerator.

The whole accelerator block (SAURIA subsystem) interfaces with the rest of the SoC via 2 AXI4-Lite
Slave ports used for configuration (one for SAURIA and another one for the DMA), plus one AXI4
Master port that is connected to the memory system.
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Figure 19. SAURIA subsystem with private DMA. Assuming AXI memory bus of 128 bits and AXI I/O
bus of 32 bits. CDC to cross clock domains (from 1.5GHz to 500MHz).

5.1. Configuration Address Space

SAURIA is configured by an AXI4-Lite Slave port that gives the software system (CPU/PICOS
scheduler) access to its internal configuration registers. See SAURIA Config Address Space document
for a description of the different registers and the signal layout.

5.2. DMA Integration and Configuration

SAURIA will use the open source fastvDMA engine from Antimicro. Refer to its github repository for
documentation about its register map and configuration procedure.

As SAURIA works directly with tensors to avoid the data inflation caused by convolution lowering,
some extensions had to be added to the DMA in order to support unaligned memory transfers. The
issue is as follows: SAURIA needs to perform tiling to the full tensor residing in the DRAM (see 5.4
for more details). The sub-tensor that will be stored in local SRAMs for computation will be
contiguous in memory: the first element of row N comes after the last element of row N-1. However,
the full tensor stored in the DRAM is also contiguous in memory, and their dimensions will not be the
same. Moreover, the tensor dimensions cannot be restricted to multiples of the AXI Data bus width
due to the nature of convolution operations and how SAURIA works. Hence, when transferring data
from DRAM to the SRAMs, there can be mismatches in the data alignment.

The fastvDMA engine does not do any realignment when the transfers are unaligned. Given that we
did not find another suitable open-source IP and that properly designing a custom-made DMA could
not work with the project schedule, we decided to extend the DMA functionalities by adding two
Realigner modules at each side of the DMA.
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The function of the Realigner module is as follows: it monitors the AW and AR channel of the AXI
Data ports of the DMA system to detect when a transfer is unaligned. If so, it takes the data from the
W channel and realigns it properly according to the source and destination word-offsets from AR.addr
and AW.addr.

Figure 20. Computation of the first 3 tiles of a convolution.

The Realigner modules need some additional information from the host/PICOS to work properly. We
did some minor modifications to the DMA in order to have an extra 32-bit configuration register that
connects directly to the realigners.

Table 8. Extra register address of the fastvDMA configuration space used for the Realigners.

Address Purpose Details

0x38 Realigner Configuration

bits 19:0 btt Bytes to transfer, minus 1 (0 means 1 byte)

bits 27:20 n_bursts Number of AXI bursts

bit 28 dummy_burst Set to 1 if an extra burst with no actual source data is
needed.

bit 29 disable_realign Disables the realigners. The DMA works only with
aligned transfers.

The realigner works with any source and destination alignment and any transfer size except BTTs in
which the last AXI burst has a length of 256. Due to the nature of the realignment operation, in such
cases it can happen that the realigned burst has 257 beats, which is unsupported by conventional AXI
modules. If such a transfer is needed, the realigners will only work properly if the DMA and realigner
are configured as follows:

1. Add 1 to the DMA line size (registers 0x14 and 0x24), so that there is an extra AXI burst of
size 1.

2. Set the dummy_burst bit of the Realigners configuration register (0x38).

The realigner only works with transfers from SAURIA to the memory bus and vice-versa. If the DMA
must be used for transfers to and from the memory bus, addresses must be aligned.
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5.3. Controlling SAURIA
SAURIA’s internal memories are double-buffered single-port SRAMs with a capacity of 32 kB for
each tensor involved in the convolution (namely: input feature maps, weights and partial sums). In
most cases, the full convolution tensors will not fit in 32 kB of space, so in general the computation
must be divided into many small tiles that fit in the SRAMs. See section 5.4 for a description on how
the tensors should be split in tiles.

The following figures depict how the computation of the different tiles should be scheduled.

Figure 21. Computation of the first 3 tiles of a convolution.

Figure 22. Computation of the last 2 tiles of a convolution.

More in detail, starting from the beginning of a computation we will have:

1- SAURIA’s internal registers are configured with the current convolution options. This only
needs to happen before the first tile of a convolution, since all perform the same operation.

2- The DMA is configured to bring the first input data tensors from the off-chip memory to
the SRAMs internal to SAURIA. This can happen in parallel to (1).

3- Upon completion of the DMA transfer, the START signal from SAURIA’s configuration
registers is set to 1, which starts computation #0.

4- Concurrent to (3), the DMA is configured to bring the second input data tensors to
SAURIA. Thanks to the double-buffering system, this can happen in parallel to computation.
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5- Upon completion of SAURIA and the DMA transfer, the DMA is configured to send the
first results tensor from SAURIA to the off-chip memory. In this step, if the DMA transfer
takes longer than the accelerator, the latter will have to stall until the transfer is complete.

6- Concurrent to (5), the START signal from SAURIA’s configuration registers is set to 1,
starting computation #1.

7- Upon completion of the DMA transfer, the DMA is configured to bring the next input data
tensors to SAURIA.

8- Upon completion of SAURIA and the DMA transfer issued in (7), the DMA is configured
to send the last results tensor from SAURIA to the off-chip memory. As in (5), this step
introduces computation stalls if the DMA transfer takes longer than the computation.

9- Concurrent to (6), the START signal from SAURIA’s configuration registers is set to 1,
starting a new computation.

10- Repeat steps (7) to (9) until all tiles are computed.

11- When issuing the last tile computation, bringing data can be skipped (since there is no
next data)

5.4. Computing convolutions with SAURIA
As mentioned in the previous section, most convolution tensors will not fit in SAURIA’s 32 kB
SRAM memories. For this reason, we must split them into smaller regions (called tiles) with data
occupying at most 32 kB.

Let us consider the three tensors involved in a convolution operation as depicted in the figures below
(ifmaps in Figure 20 (left), weights in Figure 21 (left) and partial sums in Figure 20 (right)).
Algorithmically, a convolution consists of shifting the convolution kernel (the 3D Ac x Bw x Bh part
of the weights tensor, see figure 21-left) through the ifmaps tensor (see this gif for a friendly
illustration). On each location, the weighted sum of all ifmaps inside this kernel is summed to produce
one partial sum output. The amount of times we can shift this kernel through the ifmaps tensor
determines the spatial dimensions of the partial sum output tensor. The different output channels of the
psum tensor (Ck dimension) are generated by repeating the kernel shift through the ifmaps with the
corresponding set of weights (forming the fourth dimension of the weights tensor).

In order to perform this computation by parts, for each tensor we define a smaller sub-tensor (see
highlighted part on figures 19 and 20) of at most 32 kB that will be our current tile. SAURIA will
perform a convolution with the ifmap and weight sub-tensors and add the results to the partial sums
sub-tensor. We can represent a tile with a pointer to the address of its first element. This way we
know the base address needed to configure the DMA for transferring the elements of the tile.

After a tile has been computed by SAURIA, we proceed to the next one by managing the
corresponding pointers. Given the multi-dimensional nature of the tensors, each pointer must be
incremented by a different amount depending on the direction towards which we move the tile.

28

https://qph.fs.quoracdn.net/main-qimg-b662a8fc3be57f76c708c171fcf29960
https://qph.fs.quoracdn.net/main-qimg-b662a8fc3be57f76c708c171fcf29960


Figure 23. Illustration of tensor tiling for ifmap and psum tensors.

Figure 24. Illustration of tensor tiling for weight tensors, represented as 4D (as in the actual convolution) or as a
3D tensor with the spatial dimensions collapsed on a single one (more useful for data movements).

The Partial sums pointer can be described by the following equation, where x, y, z are the indices for
moving the tile along the tensor width, height and channel, respectively:
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The IFmaps pointer is similar to the psums one, but due to the nature of the convolution operation,
each movement in a spatial dimension must translate to an increment in Cwtil columns or Chtil rows.
This is because, for non-unit kernel shapes, the convolution “trims” part of the ifmaps tensor, so an
overlap is needed as depicted in Figure 19. This pointer can be described by the following equation:
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The Weights pointer is simpler, since the kernel spatial dimensions (typically 1x1 or 3x3) cannot be
split, and all the elements along these must be transferred. Since the Bw and Bh dimensions are not
needed to reason about the pointer management, we can join them as Bw*Bh to simplify the picture to
a 3D structure, which is easier to visualize (see Figure 20-right). Due to SAURIA’s internal structure,
the output channels dimension (Ck) is contiguous in memory for the weights, so it is represented as x
in the following equation, while z represents the input channels (Ac).
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By managing these different pointer values we can keep track of the locations of the tiles that must be
sent to SAURIA. The total number of SAURIA jobs to prepare and run can be obtained by
multiplying the number of partitions needed for each tensor dimension. Depending on how the loops
are arranged (i.e. along which tensor dimension we move the current tile) we can skip the transfer of
one of the tensors during many cycles, since its location will not change in the inner loop. There are
three options:

1. If the inner loop iterates over the spatial dimensions (Cw/Aw and Ch/Ah) we can skip the
reading of weights from DRAM to SRAM for all but the first iterations of the inner loop.

2. If the inner loop iterates over the output channels dimension (Ck) we can skip the reading of
ifmaps from DRAM to SRAM for all but the first iterations of the inner loop.

3. If the inner loop iterates over the input channels dimension (Ac) we can skip the writing of
partial sums from SRAM to DRAM and also the reading from DRAM to SRAM, for all but
the first iterations of the inner loop.

Which option is best in terms of required bandwidth reduction depends greatly on the settings of the
convolution operation. For example, the first layers in a CNN typically have large spatial dimensions
and small channel dimensions, so skipping the weight transfer does not provide much advantage.
Similarly, the deepest layers typically have very small spatial dimensions and many channels, so it is
possible that keeping the weights is more efficient than keeping the partial sums, even if with the latter
we save two transfers (write and read).
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6. Post-Quantum Cryptography Accelerator
The Post-Quantum (PQ) Cryptography accelerator is a co-processor designed by the WP2 team. This
hardware module is intended to foster the efficient use of the Classic McEliece PQ cryptosystem by
speeding up computational bottlenecks of the latter, as well as optimizing its memory access patterns
to fit our needs.

6.1. Interface with the Post-Quantum Cryptography
Accelerator

There will be three Key Encapsulation Mechanism (KEM) algorithms (Key-Generation,
Encapsulation, Decapsulation) accelerated at the final SoC.
The section below will try to depict as accurately as possible the interface that reflects the acceleration
scenario; outcome of the research activities of the WP2 team.
In Table 8 we summarize the main features of the accelerator interface with the core.

Table 8. Basic interface features for the LCA accelerator.

Interface Features Comments

Accelerator type LCA

Control Interface Memory mapped registers (via AXI4 Lite)
CPU: Master, Accelerator: Slave

Data Interface Memory mapped registers (via AXI4 Full)
Accelerator: Master, CPU: Slave

Data Coherency Common with core

Memory coupling Last Level Cache (LLC), Core’s DRAM

Programming model Virtualization with device driver operated by OS kernel or
Direct access to memory mapped region (Bare Metal case)

Computational Granularity: The 3 accelerators representing the 3 different KEMs (Key-Generation,
Encapsulation, Decapsulation) will be designed and implemented as Loosely coupled accelerators
regarding the processors computational pipeline. In Figure 19 we can see the 3 Key Encapsulation

Mechanism (KEM) accelerators that the PQC accelerator comprises. For the sake of simplicity and to
give a deeper look into the PQC accelerator, the 3 KEM hardware modules are presented as different

boxes in Figure 19. The final PQC accelerator will enclose the functionality of all 3 while the user will

31



be able to choose the desired functionality by a specifically designed control register.

Figure 25. A High-Level overview of the PQC accelerator internal sub-functions.

Control Interface: The computational module will need some configuration registers to customize
and initiate its computation. Since we are dealing with an LCA module we can have memory mapped
registers controlling the configuration and the status of the accelerator. Specifically these registers will
be accessed via AXI4 Lite interface where CPU will be the Master and the accelerator the Slave.
For the accelerator computation finalization the accelerator will have a dedicated interrupt signal
connected to the CPU. Otherwise a single-bit register accessed via AXI4-Lite can notify a polling
processor for the end of the respective computation.

Data Signals: As for the actual data the AXI-Full interface will be utilized for the data transfer
to/from the LCA accelerator. The accelerator in this case will act as the Master while the core will act
as the Slave. Furthermore, no data coherency support between the accelerator and the core will be
needed, since the tasks performed by the core while the accelerator is busy will operate on
independent data.

Memory coupling: The connection of the LCA accelerator to the memory hierarchy will be at the
Last Level Cache (LLC) or DRAM . Any intermediate results, not needed by the core, can be
temporarily saved to the accelerator’s internal SRAMS. The final result will be transferred to the
shared memory (LLC/DRAM).

Programming Model: In the presence of an OS the accelerator will be exposed via a device driver
operated by the kernel space. Virtualizing the device and keeping the control of the accelerator at the
kernel space provides us with portability across systems and an elevated level of security.
In the case there will be no OS running at the core, then the accelerator will be controlled by
loading/storing data from/to the memory mapped regions corresponding to the specific functionality
the user desires.

Figure 20 shows a high-level overview of the PQC accelerator and its basic interface with the core
comprising the AXI4-Full, AXI4-Lite and interrupt signals whose functionality is described above.
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Figure 25. Generic view of the PQC accelerator block and its interface with the RISC-V core.

Finally, Table 9 depicts an overview of the memory mapped region of the control and data signals of
the accelerator. This is not an exhaustive list of all the memory mapped registers but serves as an
initial and representative sample. The layout will be changing along with the finalization of the PQC
accelerator design.

Table 9. Basic layout and functionality of the memory mapped region of the accelerator.
COH = Clear on Handshake, COR = Clear on Read

Address Purpose Details

0x00 Control Signals

bit 0 ap_start Read/Write/COH

bit 1 ap_done Read/COR

bit 2 ap_idle Read

bit 3 ap_ready Read

bit 7 auto_restart Read/Write

others reserved

0x04 Global Interrupt Enable Register

bit 0 Global Interrupt Enable Read/Write

others reserved

0x08 IP Interrupt Enable Register

bit 0 enable ap_done interrupt Read/Write

bit 1 enable ap_ready interrupt Read/Write

others reserved

0x10 Data Signal of data_1_out_low

bit 31~0 e_out[31:0] Read/Write

0x14 Data Signal of data_1_out_high

bit 31~0 e_out[63:32] Read/Write
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7. Picos Accelerator
Picos is a hardware implementation of a task-based programming model runtime (e.g. Gomp for
OpenMP or Nanos6 for OmpSs-2) developed at the BSC programming models group. The main
objective is to reduce the runtime overhead by accelerating task scheduling (including dependence
resolution) and task synchronization (taskwait).

Since in the DRAC tapeout there will be several accelerators besides Picos, we want to make it
schedule tasks for accelerators too. To achieve this, Picos needs direct access to the other accelerators
through the same AXI-Lite interface as the CPU. Figure 21 shows a high-level view of the interface
between Picos and the rest of the chip. Figure 22 contains the main internal modules and how they are
interconnected.

Picos is controlled mainly with hardware queues (implemented as SRAMs or registers, TBD). Each
communication point (ready task, finish task, taskwait request, taskwait complete, new task, new task
ack) has an address range assigned, and is accessible to the CPU through a memory map.
The CPUs can use polling to read the queues, but accelerators notify task finalization to Picos through
interrupts.

The arguments of CPU tasks can be stored in memory, but Picos needs access to the arguments of
accelerator tasks. These arguments are stored in an internal SRAM of the dependence manager
module.

Picos assumes that physical addresses are 32-bits, as well as the AXI-Lite IO interface.

Lifetime of a task inside Picos
● A CPU (probably Lagarto Ka), executes some code that calls a task creation API.
● Internally, this API sends the task to the new task creation interface of Picos.
● Picos returns an ack message to the creator because it may be not possible to create the task at

that moment (e.g. if the internal memories of Picos are full). In this case, the CPU can either
try again or execute other tasks and try again later.

● If the task is accepted by Picos, it goes to the dependence manager or to the scheduler directly
if it does not have any dependency.

● When the task is ready, the scheduler decides in which queue to put the task. If it's an
accelerator task there is only one possible option.

● The CPU runtime continuously checks its queue when it is not executing any other task. The
accelerators however are configured by a state machine inside Picos.

● When the task finishes, the CPU notifies Picos writing in the finish task queue. The
accelerators use an interrupt signal instead. The taskwait manager is notified to check if a
taskwait request has been satisfied. If the task has dependencies, this is also notified to the
dependence manager to wake up other tasks.

34



Task synchronization
This part is only relevant for CPUs because accelerators can not create tasks.

● When the code calls the taskwait API, a taskwait request is notified in the corresponding Picos
queue. The request indicates how many tasks have been created by the same parent, and an
identifier of that parent.

● When all tasks of that parent have finished, the taskwait manager module writes a notification
in the taskwait complete queue of the CPU that created the task.

● This CPU polls this queue, and can execute other tasks while the queue is empty.

Figure 26. Picos interface with the CPU and accelerators.
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Figure 27. Picos subsystem internal interconnection

8. Conclusions
This document presents the different design proposals that will be the basis for achieving the DRAC
objectives.

First, the design of the Lagarto Ka processor is presented, a 2-way 64-bit out-of-order processor
capable of running the open-source ISA RISC-V. This processor includes in its design dynamic
planning techniques with which it is sought to achieve high performance and low energy consumption,
maintaining the trade-off between complexity and performance.
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Coupled with the Lagarto Ka processor, a set of specialized accelerators are designed in the DRAC
project to facilitate the execution of specific applications. In this document we have defined all the
interfaces required to integrate such accelerators in the Lagarto Ka processor.

The first accelerator targets genomic analysis applications. Such accelerator is based on a novel high
performance parallel architectures for processing and analyzing genomic data at a large scale. These
applications are a relevant component in current and future personalized medicine applications: the
sequencing phase is an essential part of most genomic data analysis pipeline. The reduction in its
processing cost directly impacts the treatment of health data.

The final DRAC design also includes an accelerator for automotive applications with approximate
computing in FDSOI technology. The advent of autonomous driving requires relatively
straightforward (and inexpensive) hardware that gives a very high performance within a stringent
consumption limit to meet the requirements of automotive systems. The current high-performance
systems that could provide the necessary performance do so with very high consumption.

Thus, this project is focused on designing an accelerator that uses the approximate computation for
complex functions and the FDSOI technology (oriented to low consumption). It will be capable of
introducing alterations in the results when operating at low supply voltage; without worsening the
global precision of the prediction process. In particular, this project will design and implement the
indicated calculation unit and define its integration into future generations of the European processor,
which attacks the supercomputing and automotive segments.

At last, a cryptographic accelerator is integrated. In the DRAC project, different candidate schemes
are analyzed. Additionally, the corresponding RISC-V extensions will be designed to be incorporated
into the processor. Classical security techniques such as randomization will also be developed and
implemented to achieve a safe out-of-order processor and the implementation of hardware security
levels (rings) together with the hardware support of the virtualization mechanisms present in the set of
instructions for RISC-V.

Finally, a memory hierarchy capable of maintaining the correct coherence and consistency of the data
will be implemented through its different cache levels (L1, L2, main memory) and the accelerators
developed in this project. Likewise, the interfaces of the possible direct communication schemes with
the accelerators are proposed, in order to achieve an improvement in the final performance of the
system.
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