

Final report on performance of genomics data analysis
applications and pipelines in computational systems

Informe final sobre el rendimiento de las aplicaciones

y pipelines de análisis en sistemas de computación

Designing RISC-V-based Accelerators for next generation Computers (DRAC)

Código de Proyecto: 001-P-001723

Número de entregable: E3.3
Nombre de entregable: Informe final sobre el rendimiento de las aplicaciones y
 pipelines de análisis en sistemas de computación
Periodo cubierto: mes 01 a mes 36
Revisión: 01

Fecha límite del entregable: 31 diciembre 2022
Fecha de entrega: 31 diciembre 2022

Fecha de inicio del proyecto: 1 junio 2019
Duración: 36 meses

Miembro responsable del proyecto: Universitat Autònoma de Barcelona
Autores del entregable: Antonio Espinosa, Santiago Marco, Juan Carlos
 Moure, David Castells, Quim Aguado

Este proyecto está financiado por el Fondo Europeo de Desarrollo Regional de la Unión
Europea en el marco del programa Operativo FEDER de Cataluña 2014-2020 con una
financiación de 2.000.000€ y con el soporte de la Secretaria de Universidades e
Investigación

Grado de divulgación
PU Público X
CO Confidencial, solo para miembros del consorcio

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 2

Historia del documento

Versión Fecha Descripción/Cambios Razones
01 13/10/22 Primera versión documento

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 3

1. Genomic sequencing and bioinformatics processing pipelines 6

1.1. Approximate string matching for genomic sequences .. 7

1.2. FM-index elements .. 9

1.3. Sequence alignment .. 11

1.3.1. Error model .. 12

1.3.2. Alignment classification ... 13

1.4. Approximate String Matching ... 14

1.4.1. Dynamic programming pair-wise alignment .. 15

1.4.2. Filtering algorithms .. 16

1.4.3. Exact filters. Candidate verification techniques ... 20

1.4.4. Approximate filters .. 21

2. Architectural design considerations ... 24

2.1. FM-index architectural design ... 24

2.1.1. FM-index memory access pattern .. 24

2.1.2. FM-index computational needs ... 25

2.1.3. FM-index operators .. 26

2.2. Sequence filtering accelerating computations .. 28

2.2.1. Block-wise computations ... 28

2.2.2. Bit-parallel algorithms .. 28

2.2.3. SIMD algorithms ... 29

3. Main bioinformatics acceleration proposals .. 30

3.1. Wavefront alignment algorithm to accelerate sequence alignment on GPU
platforms .. 30

3.2. Wavefront-GPU ... 30

3.3. Wavefront-FPGA ... 31

3.4. Pre-alignment filters on FPGA platforms .. 31

3.5. ISA SIMD Vector Extensions for bioinformatics applications 32

4. Main performance results .. 34

4.1. Wavefront algorithm WFA .. 34

4.2. Accelerated wavefront results and experimentation .. 35

4.3. Wavefront-FPGA ... 37

4.4. Pre-alignment filters on FPGA platforms .. 38

4.5. ISA SIMD Vector Extensions for bioinformatics applications 39

5. References .. 41

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 4

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 5

Executive summary

This report presents the final report of WP3 objectives and results achieved. We
describe how High Throughput Sequencing (HTS) alignment algorithms must guarantee
well defined, quantifiable, and reproducible accuracy. Mapping is a crucial stage in most
resequencing pipelines and many other HTS analysis workflows. Good quality results
generated by a mapper will heavily influence downstream analysis, ultimately leading
to meaningful and accurate scientific findings in biological research and medical
diagnostics.

HTS calls for high performance algorithms that can cope with increasing yields in the
production of genomic data. Even if a mapping tool delivers high quality results, they
could be of no use if the time spent computing them is impractical. Therefore, sequence
alignment algorithms have to keep up with the pace of HTS technologies. The objective
of this project is to improve some relevant high-performance algorithms for sequence
alignment that can be used in new acceleration computer architectures. Current project
results show a relevant increment in the speed and quality of new methods proposed in
the scope of the project. ISA extensions and hardware acceleration methods presented
meet the requirements described in specific objectives of the project.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 6

1. Genomic sequencing and bioinformatics processing pipelines

The recent development of high throughput sequencing technologies (HTS) from Roche,
Illumina, IonTorrent, Nanopore and Pacific bioscience companies has allowed the
possibility of fast and affordable sequencing of any living organism. As the result of this
technology, a single sequencer system produces millions of short sequences for each
individual as a representation of the individual genome split in millions of short
nucleotide sequences.

From the point of view of data processing, scientists have established different protocols
that describe how these sequences must be processed to build an individual genome
first and then search for specific scientific analysis considering the differences in the
individual data compared with reference genomes [Marx 13].

The quality of the results obtained becomes very relevant as downstream analysis
depends on the accuracy of the previous steps. A poor methodology or wrong choice of
protocols may produce errors that affect the whole analysis. The current state of the art
is the development of large and complex analysis pipelines [Hwang 15] where many
stages are still being into analysis to find better performance, accuracy and quality-
control mechanisms. Also, standardization and flexibility have become paramount in
this field for every research effort [Gargis 15]

Challenges to be solved involve the processing of the data and the quality assurance of
the results obtained. As modern sequencing technologies become more affordable and
produce better quality results, the stress is being put in the computational analysis of
the datasets. The scientific community needs strong good quality methods, algorithms,
tools and pipelines that make a good use of computational resources to improve the
current bottleneck of genomic data analysis.

High-throughput sequencing (HTS) principally denotes those technologies capable of
sequencing in the order of millions of reads per run, relatively quickly (from a few days
to several hours) at very low price (less than $1 per million bases). Using them, we can
deep-sequence a genome (cover every base of a genome with a large number of reads)
producing massive amounts of genomic data. These techniques are often called massive
parallel DNA sequencing as they rely upon millions of reactions run simultaneously to
achieve very high yields of production [Reuter 15], [Loman 12]

HTS alignment algorithms have to guarantee well defined, quantifiable and reproducible
accuracy. Mapping is a crucial stage in most resequencing pipelines and many other HTS
analysis workflows. Good quality results generated by a mapper will heavily influence
downstream analysis, ultimately leading to meaningful and accurate scientific findings
in biological research and medical diagnostics.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 7

HTS calls for high performance algorithms that can cope with increasing yields in the
production of genomic data. Even if a mapping tool delivers high quality results, they
could be of no use if the time spent computing them is impractical. Therefore, sequence
alignment algorithms have to keep up with the pace of HTS technologies. They have also
led the development of many new analytical tools for measuring important biological
processes (e.g. variant calling, splicing, detecting protein binding, gene annotation and
expression, copy number variation, and more).

The objective of this project is to improve some relevant high-performance algorithms
for sequence alignment that can be used in new acceleration computer architectures.

As bioinformatic applications evolve, their scope is increasing and becoming ever more
complex. For that reason, applications cannot be fully understood without context and
must be studied in the general view of large analysis pipelines involving very different
components. Current HTS data analysis pipelines consist of several steps and involve
numerous tools. Generally, these analysis pipelines are divided into three stages:
primary, secondary, and tertiary analysis.

Primary analysis consists of machine specific steps to call base pairs and compute quality
scores. Basically, the base calling step converts raw sequencing signals from the
sequencer into bases (i.e. A,C,G,T, and N for unknown calls). Additionally, this stage is
expected to deliver a quality metric of the calling step. For this, quality values are
assigned to each base call to estimate the likelihood of an erroneous call at that base.

Secondary analysis pursues the reconstruction of the original genome using the reads.
This can be achieved by means of or de-novo assembly techniques resulting a list of
sequences aligned against a reference genome (read mapping).

Finally, tertiary analysis main aim is to give interpretation of the results produced by the
secondary analysis. Sometimes this analysis integrates data coming from multiple
experiments and samples. Examples of this analysis are gene annotation, differential
expression studies, alternative splicing studies, detection of rare variants, association
studies etc.

1.1. Approximate string matching for genomic sequences

Full-text self-indexes have become very common because of the latest developments in
HTS technologies. Essentially, these data structures address the challenge of indexing
genome-scale references on computers reducing the need of memory. Full-text indexes
can even be coupled with compression algorithms in order to generate compressed full-
text self-indexes, thus reducing memory requirements even further [Navarro 07] [Grossi
03] [Ferragina 09] [Siren 08].

From the list of common data structures to store full-text self-indexes the most relevant
for genomics data processing are succinct data structures. These indexes aim to perform
fast searches over massive amounts of data stored in little space.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 8

The first structure of relevance is the suffix array SAT[0..n-1] of a text T. It is an array
containing all the starting positions of the suffixes of T sorted in lexicographical order.

Figure 1-1: suffix array of the text T=GATTACA$, where $ denotes the end of the text.

The character "$" is smaller than any other symbol belonging to the alphabet

Note that any substring P of the text T is at the same time a prefix of a text suffix. In this
way, any pattern P can be binary searched over the suffixes of SA in O(m log(n)) time as
each step in the binary search requires comparing up to m symbols between the pattern
P and the corresponding text suffix.

The Burrows Wheeler Transform (BWT) [Burrows 94] is a fundamental concept in the
field of succinct and compressed full-text indexes. The BWT is a permutation of the
original text which has useful properties when one has to implement not only
compression, but also string searching. BWT arranges together characters followed by
the same context. In most cases, this leads to runs of the same characters which makes
the BWT permutation susceptible to being easily compressed.

Beyond the compression features, the BWT transform leads to a transformed text that
depicts useful properties for string searching. To explain those properties we need to
define the rank function rank(c,i) and the accumulated counters C[a].

• rank(c,i) is defined as the occurrence function over the suffix of Tbwt from 0 to i.

rank(c,i) = occ(c, Tbwt[0..i])

• C[a], where a ∈ Σ, is an array containing the number of characters in text T that
are smaller than a.

𝐶[𝑎] = 'occ(c, T), ∀a	 ∈ 	T
	

"#$

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 9

The FM-index [Ferragina 00] exploits the BWT transform to build compressed text
indexes. In the end, they figured out a way of exactly searching patterns using the BWT
text and some auxiliary data structures. At the same time, they proposed compressing
the BWT text so as to reduce the index space requirements to O(n) − bits, which in
practice can index the 3GB of the human genome in less than 1GB depending on the
compression algorithms. Despite their compression properties, most current FM-Index
designs do not compress the BWT for the sake of providing fast query accesses as the
overall memory usage without compression is quite reasonable in practice – about the
same size of the text encoded in ASCII.

LFc function
To search for an exact pattern, the FM-Index uses two sentinels to delimit an interval
containing all the suffixes that have the pattern as a common prefix. The main idea
behind the FM-index is to use this LF function to backward search a pattern by iteratively
updating two sentinels and exploiting the properties of the BTW.

input: P pattern, TBWT, C[]
output: SAT interval for P
begin
 lo = 0
 hi = n - 1
 for j = m - 1 to 0 do
 c = P[j]
 lo = C[c] + rank(c, lo -1) + 1
 hi = C[c] + rank(c, hi)
 end
 return(lo, hi)
end

In this manner, the backward search delimits the SAT rows that exactly match a given
pattern in O(m) time. Moreover, we can compute the number of matching positions by
subtracting the sentinels at any point of the search (i.e. occ(P, T) = hi − lo), without
computing the actual matching positions in the text. In case lo > hi, we know that there
is no exact match for the given pattern.
Note that once the SA interval for a given pattern is known, all the positions inside its
range are encoded in SA-space. That means that, for a given i-th row the MT matrix we
lack the corresponding position in the text (i.e. SAT[i]). In order to decode positions from
SA-Space to Text-Space we need to unwind the BWT until a known corresponding
position is reached. In a trivial case, we would traverse the text backwards, applying the
LF function s times, until the first row is reached (i.e. beginning of the text T). At that
point we would know that the source i-th row corresponds to s suffix of the text.

1.2. FM-index elements

The FM-index consists of the BWT of the text and some auxiliary data structures used to
accelerate the computation of the LFc function, decode positions from SA-space to Text-
space and fetch substrings of the original text.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 10

The first structure to consider is the C[] array used to accelerate the computation of the
LFc function. This C[] array C[a ∈ Σ] stores the accumulated occurrences of each
character in the text. In addition, the FM-index stores partial counters interleaved with
the BWT text to accelerate the computation of the rank function. In this way, the BWT
text is divided into equal blocks of b characters (b is the block length).

Each FM-Index block bi, as in figure 1-2, contains b characters of the BWT (Tbwt

i) and the
partial counters (ci [a ∈ Σ]) holding the count for each character until that position.

Figure 1-2: FM-index block design

The number of blocks in the FM-Index is equal to |b0,...,bn| = ⌈|T|/b⌉ and that, for a
given character a, the content of the partial counters is equal to
ci[a] = rank(a, i · b) = occ(a, Tbwt [0..i · b]).

In this manner, computing rank() avoids counting occurrences up to this point and leaves
the counting to potentially few characters past the counters. Depending on the FM-
Index layout, regular inclusion of counters in the index will speed up rank queries at the
cost of more index space. This is a trade-off between space consumption and cost per
LF-operation.

Additionally, so as to accelerate the decoding of positions from SA-space to Text-space,
any efficient FM-Index implementation stores samples of the SA. Depending on which
sampling scheme is chosen, the average number of LF operations performed to reach a
sampled position will vary. Also, different schemes allow for better average
performances at the expense of extra index space.

For many indexed approximate string matching algorithms, it is also very important to
be able to retrieve any substring of the original reference text efficiently. Note that most
alignment algorithms end up pairwise aligning the pattern against several candidate text
regions. For that, efficient recovery of text regions is of key relevance. However, as it is
initially formulated, the FM-Index can only retrieve text regions by means of iterating LF
operations in O(|P|) time. Not only does this text retrieval mechanism perform several
sparse index accesses before retrieving the whole text region, but each LF operation also
involves several instructions just to retrieve a single character.

Also, in many cases, from a given position p in SA-space we need to jump forward to
start the LF text retrieval from several bases ahead. To do so, we need to decode that
position into Text-space, increment the position p, and encode back to SA-space. As we
can see, full-text built-in operations given by the FM-Index are very space efficient but
quite convoluted for simple text queries.

For these reasons, it is more convenient to store the full reference text together with
the FM-Index. Despite the index space increasing notably, DNA text is rather suited to

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 11

being compacted – using 2 or 3 bits per character – reducing the space overhead. For
instance, for the human genome with a length of approximately 3G nucleotides, the
plain text could use up to 1GB of extra space. In this way, once we decode a position p
into Text-space, accessing its corresponding text region becomes trivial and more
efficient as all the region is stored contiguously in memory.

1.3. Sequence alignment

Sequence alignment denotes a series of bioinformatic algorithms whose purpose is to
establish homology between genomic sequences. In order to do so, sequences are
aligned –lined up with each other– so that the degree of similarity is maximised
according to a given string distance function or score. In the case of local alignment, we
search for suitably matching parts of the different sequences. In the case of global
alignment, we search for the degree of similarity of the full sequences.

Sequence alignment is a general term and has multiple embodiments (as in pair-wise
sequence comparisons, multiple sequence alignment, construction of evolutionary
trees, etc).

Considering the problem of mapping DNA sequences against a reference genome (a.k.a
mapping to a genome), mapping to a genome aims to retrieve all positions from a given
reference (collection of chromosomes, contigs or so) where a given DNA sequence
(relatively small and several orders of magnitude smaller than the reference) aligns
(using a given distance function and error tolerance). Ultimately, the goal is to retrieve
the actual genomic location which has generated the short sequenced read at hand. This
represents the most common case of use and we traditionally refer to it as to searching
for the best (or "true") match.

It is important to highlight that in general there will be more than one alignment, i.e.
more than one location that might have plausibly originated the read (case of
multimapping read). So, after finding all matching locations as stated before, the best
candidates, that is, those showing highest sequence similarity to the original read, must
be selected. In cases where no plausible locus of origin is found, or multiple equally likely
candidates are found, the read must be flagged as ambiguous and possibly discarded. If
one aims to retrieve all the equally distant matches having a minimum distance we say
that one is performing an all-best search. If one simply wants to retrieve all matches
within some error threshold we refer to an all-matches search.

Sequence alignment plays a fundamental role in many experiments like resequencing as
it is responsible for mapping each read in its sequenced locus. In this way, mapping tools
must pick out the most likely source location in the reference genome allowing certain
error divergence from it. It is important to highlight that for common resequencing
experiments with 30x coverage of the human genome, HTS Illumina machines will
generate 100 nucleotide x 900 million reads. Mapped against 3,000 million bases of the
human genome, this constitutes a challenging problem of performance for modern
mapping tools.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 12

1.3.1. Error model
All in all, sequence alignment is fundamentally about assessing homology between
sequences. It is trivial to determine the homology of two sequences when both are the
same (exact match). However, when it comes to similarity allowing errors, it is necessary
to understand the very nature of the biological events that can transform a given
sequence into another.

Broadly speaking, an error model is defined by what is considered to be an error (error
event) and a function to score them (distance function). Given two strings (w and u) an
alignment is a combination of error events that can transform w into u (or vice versa).
From all the possible alignments of w into u, those with the least distance are called
optimal alignments (i.e. whose error events score least using the given distance
function).

In a way, optimal alignments aim to explain how to transform sequences with the least
possible number of errors. Note that an error model induces an optimization problem
to transform w to u – and vice versa – using a combination of error events that minimizes
the distance function (alignment function).

Error events are the most basic modifications that can transform a sequence into
another sequence. They represent the most common biological events that can
naturally explain sequence transformations. In this way, they model chemical changes
that can change one nucleotide into other e.g. sequencing errors, duplication error,
variations, etc.

Most common error events are substitutions (a.k.a. mismatches; one sequence of
nucleotides turned into another) and single nucleotide indels (insertions and deletions
of single nucleotides). However, in certain situations other variations are proposed. For
example, the swapping of two adjacent nucleotides (translocations).

For a given collection of error events, a distance function scores them to measure
relative distance between sequences and measure homology (e.g. conservation of
biological sequences) or divergency (e.g. degree of error). There is a variety of distance
functions to choose from depending on the specific context of application.

Mismatch distance
allows only for substitutions and scores each one using a penalty 1 – in the simplified
definition – irrespectively of the nucleotide substituted. The resulting distance is equal
to the total number of nucleotides mismatching in each sequence. This distance function
is limited to sequences of the same length.

Episodic distance
allows only for insertions with a penalty of 1. Unlike the rest of the distances presented
here, this distance is not symmetric (i.e it may be possible to convert one sequence into
another but not vice versa).

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 13

Longest common subsequence distance or Indel distance
allows only for insertions and deletions (but not for substitutions). This distance function
scores each single nucleotide indel with a unitary penalty. Thus, the indel distance
between two sequences is equal to the total number of nucleotides that must be
deleted and inserted to transform one sequence into another.

Edit distance
In general, this distance allows for any single edit operation (i.e. substitution, insertion,
and deletion) penalizing unitarily each one. So that the resulting distance is equal to the
total number of edit operations that it takes to transform one sequence into another.
This is one of the most commonly used distance functions due to its simplicity,
versatility, and because there are many efficient alignment algorithms based on it.
Damerau–Levenshtein distance is a variation in which transpositions (swaps of two
adjacent characters) are also allowed with a penalty 1.

General scoring matrixes.
In general, it is possible to define a function to assign a penalty to each nucleotide
substitution, insertion of any given length, and deletion of any length. These tailored
scoring matrixes aim to statistically model the frequency of certain errors. For example,
in DNA substitution mutations are of two types: transitions (i.e. inter- changes of purines
(A ↔ G) or pyrimidines (C ↔ T)) and transversions (i.e. interchanges of purine for
pyrimidine bases). It is known that transition mutations are much more frequent in
nature. To model this, transversions would be penalized more than transitions in the
scoring matrix. As a result, optimal alignments following this scoring scheme would
favour transitions, leading to a more plausible transformation between sequences.
Another good example is the so-called Smith-Waterman-Gotoh distance where gaps are
scored according to their length.

 A useful insight regarding error models is to understand that the error does not
necessarily have to be placed in one of the sequences. In a more general understanding
of the problem, error events are just transformations between two sequences. Hence
the term transformation operation seems more suitable. In principle, none of the
sequence has to be erroneous and alignment between both simply leads to an
understanding of its structural similarities.

1.3.2. Alignment classification

Depending on the distance function, and how it scores error events with respect to their
relative position, the shape of the optimal alignment may be different. There is a widely
accepted classification of alignment algorithms depending on how they score deletions
at the ends of the sequences – and therefore the shape of the alignment induced that
is shown in figure 1-3.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 14

Figure 1-3. Types of sequence alignment

Global alignment
Most common alignment algorithms target global alignments which are considered the
most natural form of pair-wise alignment. In this case, deletions/insertions at the ends
of both sequences score as in any other position in the sequence. We say that the ends
are not free and consequently must be aligned. For this reason, they are also known as
“end-to-end” alignments. As a result, the final shape of the alignment spans throughout
both sequences trying to match them whole.

Local alignment
By contrast, in local alignments we say that ends are free. This means that deletions at
the beginning or end of the sequence do not count towards the distance function and
thus trimming the sequence ends receives no penalty. These alignments tend to favor
highly homologous alignments between local parts of the sequence as opposed to
distant – and noisy – end-to-end alignments of the sequence.

Semi-global alignment
In cases where one of the sequences is much larger than the other, it makes sense to
allow the smaller sequence to align end-to-end to a local region of the large sequence.
This is a very common case when aligning relatively short HTS sequences to a relatively
large reference genome. In this case, ends are free but only on the large sequence.
Hence, trims on the large sequence are not considered (but they are on the smaller).

1.4. Approximate String Matching

Approximate string matching (ASM) refers to finding strings that match a pattern
approximately (i.e. allowing for errors).

The most used short-read technologies produce sequences in the range 75-300
nucleotides, while a long read can be up to several thousand nucleotides long. In
addition, the DNA alphabet typically has only 5 letters (that is the four bases A, C, T, G
plus an additional symbol, typically N, to model uncalled/unknown bases). Furthermore,
in short-read mapping one typically considers errors smaller than the 5% (but some long-
read technologies can get to 30%). Yet the most striking difference is probably the size
of the reference text used. In bioinformatics, genome references can be several Gbases
long (for instance the human genome is approximately 3 Gbases). On the other hand,

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 15

classical problems in ASM usually deal with databases of several megabytes – an order
of magnitude smaller like word databases.

1.4.1. Dynamic programming pair-wise alignment

To illustrate one of the most fundamental algorithms for pair-wise alignment, we
present the solution based on dynamic programming. This approach has been
rediscovered over the years within the context of several different areas. Many studies
of this method have produced many fundamental theoretical bounds for the problem
and suggested several approaches to avoid unnecessary computations.

Despite not being the fastest approach, it is without a shadow of a doubt the most
flexible solution and the easiest to adapt to the many different distance metrics.

Following Bellman’s principle of optimality, the minimum edit distance between two
strings – v and w – can be computed using a dynamic programming algorithm. To avoid
repeated computations given by the recursive formula, recursive calls are organised in
a dynamic programing table of size (|w| + 1) × (|v| + 1). Algorithm shows how to
compute this table. For instance, in following example we show the computation of the
full dynamic programing table aligning the pattern: "GAGATA" against the text
"GATTACA".

Figure 1-4. Edit distance computation using dynamic programming

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 16

Figure 1-5: initial layout of edit distance between the example sequences

The dynamic programing algorithm fills each cell based on the content of the upper, left
and upper-left neighbors. In this way, it can progress column-wise from the left most
column (initial conditions) to the last column. Likewise, it can perform the computations
row-wise from the upper most row to the last row. Either way, this approach runs in
O(|v|||w).

However, if only the distance is required, computations can be confined to just one
column – or row – and progress forward until the last column – or row – is computed
and the alignment distance is known. As we can see in the example, the minimum edit
distance between the string is 3 edit operations. Also, the path of the computations that
lead to the minimum is highlighted in blue.

Figure 1-6: path of the computation that leads to the minimum score alignment

In the previous example shown in figure 1.6, the path of the computations that lead to
the minimum is highlighted in blue. In order to recover the sequence of operations that
aligns one string into the other, we simply have to follow the path that updates each cell
from δe(6,7) to δe(0,0) (in this context usually called edit transcript). This process is
known as traceback and, as we can see, can lead to multiple possible paths – all of them
equally valid.

1.4.2. Filtering algorithms

Since 1990 filtering algorithms have been studied as a very effective approximate
matching technique. They base their success on the observation that, for a reasonable
choice of tolerated error degree, it is easier to look for regions of the text containing

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 17

pieces of the pattern without errors rather than trying to align the pattern against every
position of the text. Since looking for exact chunks of the pattern can be much faster
than trying to do approximate matching with the whole pattern, filtering algorithms can
quickly discard large regions of the text and perform much faster than other approaches
in actual practice.

For instance, while searching for the pattern P=GATTACA up to one error, we could
inspect the text and quickly discard the regions that do not contain either one of the
substrings s0 =”GATT” or s1 =”ACA”. Indeed, no matter where in the pattern the possible
error is located, either s0 or s1 must occur in all patterns containing up to one error.
In general, filtering techniques aim to filter out as many regions of the text as possible
to reduce the search space being explored down to a few candidate regions. This
approach can potentially avoid inspecting the whole text, often leading to algorithms
that are sublinear in the length of T in most practical cases.

A significant amount of research has been conducted in this area and a number of
algorithms have been proposed for different applications and typical parameter ranges
[Burkhardt 03; Weese 09; Kehr 11; Fonseca 12]. Furthermore, many filtering algorithms
have been proposed and adapted for both online and indexed searches. As of today, all
practical sequence alignment tools rely on filtering one way or another.

Generally speaking, all filtering algorithms are based on partitioning the pattern in order
to reduce the approximate string-matching problem needed to search for the individual
parts. This partition of the pattern –known as filtering scheme– induces a set of
conditions that any substring of the text has to satisfy in order to be a valid match.
Afterwards, using an index of the text – indexed search – or the text itself – online search
– all the candidate substrings are gathered and aligned against the pattern to discover
the true matches.

Traditionally, filtering algorithms are presented as just a pre-selection step to filter out
regions of the text (candidate generation). In this way, filtering algorithms are unable to
discover matches by themselves. Instead, a verification algorithm has to be coupled with
them so as to compute the actual matches (i.e. align with distance below a given
threshold). Figure 1.7 depicts the general filtering paradigm.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 18

Figure 1-7: Filtering algorithm basic principles

Filtering algorithm performance strongly depends on the balance between these two
stages. Very restrictive filters can produce very few candidates at the expense of
intensive computations meanwhile fast and nonspecific filters can produce too many
candidates. Quite often, the selection of the algorithm in the verification step is
overlooked under the assumption that previous candidate generation will have led to
few candidates. Nevertheless, it is extremely important to understand that both steps
have different complexities. For instance, in most practical scenarios, candidate
verification grows quadratically with the length of the pattern, whereas candidate
generation operates linearly.

Filtering efficiency
Back to filtering algorithms, specifically to the candidate generation step, we can
encounter several cases depending on the nature of the candidates reported by the
filter, as in figure 1.8.

• True positive (TP); when the filter reports a candidate that aligns with the
pattern.

• False positive (FP) (type I error) or "false alarm"; when the filter reports a
candidate that doesn’t align with the pattern.

• True negative (TN); when the filter discards a region of the text that truly doesn’t
align against the pattern.

• False negative (FN) (type II error); when the filter discards a region that aligns
against the pattern.

Table 1.8: filtering candidates confusion table

We define the sensitivity and specificity of a filter accordingly to this.
Sensitivity (SEN) – a.k.a. true positive rate (TPR) – measures the proportion of candidates
reported that are valid matches (w.r.t. the number of matches missed).

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 19

Specificity (SPC) – also called the true negative rate – measures the proportion of
candidates that are correctly filter out (w.r.t. the number of valid matches incorrectly
discarded).

𝑆𝐸𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑆𝑃𝐶 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Depending on the filtering algorithm, the number of discarded regions can be different
– and consequently the overall computational cost. To evaluate the performance of a
filter – and compare against others –, we commonly use the filtering efficiency (i.e.
precision or positive predictive value; PPV) as the ratio between the number of matches
found (i.e true positives) and the number of candidates produced by the algorithm (i.e.
true positives + false positives).

𝑓% =
𝑇𝑃

𝑇𝑃	 + 	𝐹𝑃

It is important to note that the maximum number of true positives reachable is
independent of the algorithm – but related to the content of the text and the pattern.
Therefore, it is the number of FP that we would like to minimise – without increasing
the filter complexity –, understood as the capability of the filter to reduce the noise (FP).

Filtering algorithms final goal is to reduce the initial search space, like a reference
genome, to a few matching regions. From this point of view, sequence alignment
algorithms can be understood as filters. Each of them is given a candidate and a pattern
and must discriminate their alignment

Exact filters are algorithms capable of computing whether a given string candidate w
aligns a given pattern P (within a maximum distant threshold e and for a given distance
metric d()). These filters are full, sensitive and specific; never fail to report a valid match
(FP = 0) and never report an invalid match as so (FN = 0).

Approximate filters are not fully specific and often report false positives in the form of
candidates that do not match the pattern (i.e. generate noise). There are many
approximate filtering algorithms to choose from with different trade-offs between
filtering efficiency and computational cost. But in general, these filters tend to be very
lightweight and perform very well in practice.

In turn, we can classify approximate filters as lossless or lossy filters; depending on
whether they retrieve all valid matches (i.e. true positives) or fail to report complete
results

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 20

1.4.3. Exact filters. Candidate verification techniques

Most classical pairwise alignment algorithms fall into this category. Extensive research
has been done in this area for many years [Needleman 70; Sankoff, 72; Sellers, 74;
Wagner 74; Navarro 01]. In this way, dynamic programming (DP) approaches [Kukich 92;
Ukkonen 85] explore the whole text and output only the matching positions (true
positives). These types of algorithm should be classified as exact-filters as they return all
matches with zero false positive rates. Despite being the most flexible solutions and
delivering the best filtering efficiency, most of them are quite computationally
expensive. This is the main reason to explore other kinds of filter more computationally
efficient, though perhaps less accurate as they may report false positives.

Since the formulation of the first algorithms to compute the pair-wise edit distance using
DP, some alternative formulations of the problem and many improved solutions have
been proposed.

One of the most notorious revisions is the approach given by [Ukkonen 85] where the
problem is formulated as finding the shortest path problem on a graph built on the text
and the pattern. In the paper, Ukkonen presented basic theoretical properties of the DP
table still exploited in modern algorithms. He formally proves that diagonals of the DP
table are monotonically increasing from the upper-left to the lower-right cells.
Moreover, adjacent cells value can differ at most by one. As a result, many algorithms
exploit these properties towards computing only the band of the DP table where
alignments up to e edit operations are confined. As a result, they drastically reduce the
amount of computations needed to calculate the edit distance between two strings.

Furthermore, these properties are exploited so as to compute edit distance e in O(e2)
within algorithms denoted as diagonal transition algorithms. These algorithms aim to
compute in constant time the cells where the diagonal values are incremented. These
diagonals – so-called "strokes" – model segments that match exactly between two
strings. Afterwards, strokes are joined to compute the optimal path which leads to the
optimal alignment. In [Landau 89] Landau and Vishkin propose one of the first
algorithms of this kind.

Another remarkable algorithm exploiting these properties is proposed by Myers in
[Myers 86]. Myers’ O(nd) algorithm – unlike many others – is able to report the optimal
alignment in O(|P|e) time. Many other algorithms have been proposed in this line of
research.

Another formulation of the problem is given in the form of searching with an automaton
[Navarro 01]. Using a non-deterministic automaton (NFA) transformation operations are
modelled as transitions over a finite number of states. Each state is associated with a
number of errors and a position of the pattern aligned. By introducing the letters of
given string into the NFA, the final state becomes active if the string aligns the pattern.
This computation can be done by means of simulating the NFA or by transforming the
NFA into the corresponding deterministic automaton (DFA).

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 21

This idea was proposed in early publications like [Ukkonen 85] using a deterministic
automaton. Later on, the computation of the automaton was further described and
improved [Baeza-Yates 99; Wu 92]. Depending on the distance metric employed, there
are solutions – like the levenshtein automaton [Schulz 02] – that perform fast in real
scenarios. However, the challenging aspect of this approach is the exponential number
of possible states that arises as the error increases. Hence, these algorithms are only
practical for reasonably low error rates.

1.4.4. Approximate filters

In brief, these techniques are based on counting substrings in both the pattern and the
candidate to assess similarity under certain error tolerance. In this way, these
techniques are able to derive fixed sets of conditions that the candidates must satisfy in
order to match the pattern.

Counting filters work in two basic steps. First, they build a profile based on counting
occurrences of q-grams in the pattern. Afterwards, they perform the same counting
procedure on the candidate text. If the counting profile is similar – depending on the
maximum distance allowed – then we can conclude with some confidence that the
pattern and the candidate match. These techniques stand out because they are simple,
yet very fast and achieve good filtration rates.

Counting characters

In the context of online filtering, the most basic version of this family is based on
counting characters [Jokinen 96]. This simple filter holds the very essence of all the filters
in this family. Basically, we first count the characters in the pattern and we build a
histogram of the number of times that each letter of the alphabet appears in it.
Intuitively, any region of the text matching the pattern has to contain a similar count of
characters. Therefore, for each region of the text we count characters. In general, any
text matching the pattern with e errors must have at least |P|−e characters from the
pattern. Note that if the pattern and the text match perfectly, the counts must be exactly
the same. Hence, we can state that if the count differs in at most e characters the
candidate can be a valid match, otherwise it is not possible and can be filtered out. Note
that the filter does not consider the relative ordering of the characters. Therefore, it is
easy to see that it can potentially generate false positives.

The computation of the pattern profile is O(|P|) and assumed to be amortized as we
check multiple candidates for each single pattern. In that way, the filter complexity is
dominated by the cost of checking the candidates which operates in linear time w.r.t.
the candidate length (O(|w|)).

Despite its simplicity, this simple filter can yield high filtration efficiency rates depending
on the pattern length and the alphabet size. Note that a 26 character alphabet is much
more diverse and restrictive than the DNA alphabet (i.e. Σ = {ACGTN}). In practice, this

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 22

filter is rarely used and it mainly serves as an introduction to logical extensions of this
idea.

Counting q-grams

At this point, it seems natural to extend the idea of counting characters to count q-
grams. In fact, profiling larger components of the pattern increases the specificity of the
filter. Q-gram filters are based on counting q-grams to discard candidates than contain
less than a given number or q-gram occurrences [Jokinen 91; Ukkonen 92]. The basic
idea behind q-gram filters is depicted in figure 1-9. As the figure shows, the maximum
number of q-grams that each potential error can modify depends on the q-gram length.
Therefore, for a given maximum error e there is a minimum number of q-grams shared
by the pattern and any potential match.

Figure 1-9: q-gram counting in a candidate

In their first formulation, q-gram filters were used in the context of online searches. The
linear cost O(|w|) of counting the q-grams of the pattern (i.e. histogram or profile
creating) is amortised by the cost of subsequent computations of the q-gram lemma on
the candidates. For that, the algorithm applies the q-gram lemma on a sliding window
that traverses every candidate and determines if the candidate is accepted or filtered
out. Counters are reused between shifts of the sliding window and therefore the
algorithm takes O(|w|) in the worst case.

Filtration efficiency of Q-gram filters strongly depends of the distribution of the
candidates (i.e. string content), the length of the pattern, the length of the q-gram, and
the maximum error. As with many other filtering techniques, there is little benefit in
benchmarking its efficiency for generic random texts. Instead, it is more useful to base
experiments on real application data. In general, with longer pattern lengths and longer
q-gram lengths, the filter achieves better filtration efficiency. However, after reaching a
certain pattern length, the filtration efficiency drops as q-grams at that length are not
specific enough. Also, as the error rate increases, the filtration efficiency of q-gram filters
decreases as it has to account for more errors.

It is important to note that these filters are greatly limited by the g-gram length as the
memory footprint increases exponentially requiring 4|q| counters (e.g. Using 32-bit
counters, for q = 7 the counters occupy 64KB). Also note that memory consumption is

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 23

not the main limitation, but the penalties derived from randomly accessing potentially
large regions of memory (e.g. cache misses, page faults, etc).

Q-gram counting technique was adapted to be used in conjunction with indexes. Many
q-gram specialized indexes have been proposed to accelerate computing the q-gram
profile of certain regions of the reference text (e.g. overlapping blocks of text [Burkhardt
03]). In any case, the basics of the approach remain the same; spotting a region of the
text or candidate whose q-gram profile matches the one of the pattern as the g-gram
lemma states. However, the indexed formulation of the algorithm allows skipping entire
regions of the reference text at the expense of accesses to the index – and memory
space devoted to the index. Note that in these cases the cost of building the index is also
considered amortised.

Q-gram filters are often used in real tools for sequence alignment. Notable examples are
SWIFT [Rasmussen 06], STELLAR [Kehr 11], RazerS [Weese 09], and RazerS 3 [Weese 12].
In fact, many practical tools incorporate in different ways the basics of q-gram counting;
namely Mr. Fast [Alkan 09], Mrs. Fast [Hach 10], Hobbes [Ahmadi 12], SNAP [Zaharia
11], and many others.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 24

2. Architectural design considerations

2.1. FM-index architectural design

One of the most important aspects of an efficient FM-index is the actual index lay-out
in memory. As accessing the index is the key building block of any indexed search
algorithm, the cost per access is going to be the major determinant of searching
performance.

An efficient FM-index design must provide a convenient trade-off between fast-memory
access and computation. In more detail, to perform an LF computation we need to
access the index to fetch the text, partial counters, and C[] array and compute the
occurrences for a given character. In this way, an efficient design should enable fast
memory access and a lightweight rank computation.

From the memory standpoint, it is desirable to reduce the number of accesses so as to
reduce the total memory bandwidth required per LF operation. But also, to efficiently
access regions of memory in the order of gigabytes, it is very important to be aware of
the penalties imposed by the memory wall [Wulf 95].

The computational objectives are to maximize memory locality and minimize the
number of failures in all the levels of the memory hierarchy (being TLB misses the least
desirable).

For that reason, architectural efforts propose ways of concentrating all the index-data
associated with an LF operation in the same memory region and keep the overall index
size as small as possible.

From the computation standpoint, the main bottleneck of the FM-index search is
counting occurrences of a character in a given FM-Index block of BWT text. For that,
several factors must be evaluated like the encoding of the characters in the text bitmaps
or the number of text bitmaps between partial counters. Furthermore, depending on
the encoding, some layouts allow using SIMD instructions to enhance the rank
computation.

2.1.1. FM-index memory access pattern

The backward search is probably one of least memory friendly algorithms and, in
practice, is bound to generate a lot of cache misses and page faults.

Experimental results show that the memory accesses of backward searches are far from
depicting locality. However, these accesses are not random at all. At each step, the
backward search delimits those suffixes from SAT prefixed by the pattern searched so
far Pi..m−1. Each time a character P [i − 1] is added to the search, the two sentinels
delimiting the search suffixes jump to another region of the SAT, this time, prefixed by

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 25

the new character and the previous prefix Pi−1..m−1. It is easy to see, that the accesses
to the FM-index change from one region of the index to another depending on the next
character added to the backward search. As presumably most of the characters of the
pattern are different, each step of the backward search potentially jumps to a different,
remote position of the FM-Index. Hence, the memory access pattern of the FM-Index is
clearly not local at all. Furthermore, for genome-scale FM-Indexes, most accesses are
bound to hit different cache blocks and a different operating system page.

The first design decision to make is the definition of an FM-Index design such that each
block bi fits entirely into a cache line. Fitting and aligning whole FM-Index blocks into a
cache line objectives are:

• one cache block has to be fetched to compute the LF operation (potentially
incurring in just one cache miss),

• minimize the memory bandwidth needed per LF call

Here, the key insight is that, depending on the FM-Index design, it is preferable to add
padding and waste index space for the sake of aligned accesses to cache blocks and page
boundaries, rather than compacting the FM-Index blocks at the expense of failing twice
when accessing blocks in the middle of two cache blocks – or even two system pages.

At the same time, an overlooked feature of efficient FM-Index implementations involves
the selection of architecturally friendly dimensions. For instance, note that any block
size b for the FM-Index is theoretically possible. However, selecting b in such a way that
Tbwt

i fits a computer word enables easier access and faster counting. For instance, using
a 2-bits alphabet and allocating b = 32 characters in a 64 bits word.

Furthermore, the power of two block lengths leads to power of two divisions to locate
the FM-Index block at each LF operation. Since the power of two divisions and modules
can be implementing shifts and masks, selecting power of two block lengths can avoid
frequent and expensive machine instructions as divisions. Likewise, block counters ci can
be squeezed into the domain of positions of the reference text length

2.1.2. FM-index computational needs
In terms of computation, the most expensive part of each LF call is counting the number
of occurrences of a given character in a text block Ti

bwt. This strongly depends on the
bitmap encoding and arrangement of the characters inside the block. For instance, a
simple encoding of the characters packed would arrange one after another (i.e. Ti

bwt =
c0 · c1 , ..., cb-1).
This naive approach not only forces several convoluted masking operations before the
actual occurrences can be properly counted, but can also potentially waste bits from a
computer word if the alphabet size is not a power of two (e.g. an alphabet using 3 bits
would waste 2 bits per 32 bits machine word; 76MB for the human genome).
To avoid this, we could use a character bitmap representation – one bitmap per
character – each using a computer word. In this case, counting occurrences are
simplified to just shifting to remove the characters beyond the rank position and

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 26

counting ones (i.e. popcount). However, this representation grows in space linearly with
the number of characters in the alphabet.

For that reason, a more efficient design stores the bits of each character separated in
different layers according to their significance; bit-significance layers encoding. For
example, in the case of 3 bits per character, this encoding would store 3 separated words
containing all the character’s bits grouped from least to most significant as seen in fig
2.1.

Figure 2.1: Bit-significance layers encoding

In this way, counting characters becomes relatively simple by (1) negating some layers
– depending on the LFc character –, (2) combining the result using bitwise AND, (3)
shifting to remove the characters beyond the rank position, and (4) counting ones left
in the bitmap.

2.1.3. FM-index operators

Just as important as the specific index layout, the actual implementation of the FM-
Index operators plays a fundamental role in the overall performance of indexed
approximated search algorithms. For this reason, careful considerations at the time of
implementing these functions can have great performance impact. Additionally, basic
search algorithms often present opportunities to implement tailored operators that can
exploit particular conditions and perform better than single unspecific operators. For
this reason, this section presents practical considerations for implementing FM-Index
operations and efficient tailored operators for particular search scenarios to reduce
computations and obtain better performance.

LFc operator

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 27

Presumably, the LFc operator is the most recurrent function within any approximated
string matching algorithm based on top of the FM-Index. Within a real mapping tool, the
LFc operator can get to be called billions of times. For that reason, an efficient
implementation of this function is crucial to achieve a good overall performance.
Moreover, modest implementation improvements can be reflected in the overall
performance. The following optimizations can easily be implemented within any FM-
Index lay-out design and quantitatively help to reduce the overall number of operations
to compute the LFc

Incorporated C[c] counters
Recalling the basic LFc definition (LFc(i, c) = C[c] + rank(c, i)), to the computation of
rank(c,i), we need to add the content of the accumulated occurrence array (i.e. C[c]).
Note that this addition is repeated each time we call the LFc function. For that reason,
we can add the content of C[c] to each mayor counter of the FM-Index (Ci[c]) and
avoid this addition whenever LFc is called.

XOR character table
In order to avoid conditional code in the LFc function, we can replace the conditional
negation of the text bitmaps using small translation tables indexed by the character of
the query. The resulting code is compact and avoids the use of conditional expressions
which can lead to possible stalls in the pipeline.

Bitmap mask table
Note that the last computation of the LFc function involves shifting unwanted bits to
compute the popcount of the remaining ones. In order to reduce computations, we can
replace the subtraction and the shift using a mask table with the precomputed masks.
The resulting code reduces arithmetic operations in favor of an indexed access to a small
array that can be cached easily.

Power-of-two divisions/modulus
Divisions and modulus operations by powers of two can easily be replaced for shifts and
masking instructions. Indeed, a modern compiler is expected to perform this
substitution on-the-fly. As a result, some of the most computationally intensive
instructions are avoided and much faster code can be generated.

Specialised popcount hardware instruction
Out of all the instructions executed within the LFc function, the popcount operation can
be the most time consuming. In fact, this operation is so computationally intensive and
recurrent in computer applications that many hardware architectures implement
tailored instructions for it. In the case of Intel architectures, the SSE 4.2 instruction set
extensions offer popcount hardware instruction that can greatly accelerate this
computation. LFc implementations using it can experiment a speedup of almost a 30%
popcount [Warren 13].

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 28

2.2. Sequence filtering accelerating computations

2.2.1. Block-wise computations

One of the most widely known approaches to improving the computation of the DP table
is the so-called Four-Russians technique [Kronrod 70]. Their approach pre-computes all
possible combinations of small DP tables of size b (i.e. look-up table of all possible DP
blocks of size b). Afterwards the algorithms proceed block-wise computing the full
matrix taking advantage of precomputed blocks; thus gaining a factor of b. Since
neighboring cells differ at most by one, the DP is encoded using horizontal– or vertical –
differences (δe(i,j) ∈ {−1,0,+1}). This makes a total of (3|Σ|)2bpossible input
combinations to each precomputed block. Choosing b=O(log(|P|)) the complexity gets
reduced to 𝑂(|'|∗|)|

*+,(|'|)
). In short, assuming equal text and pattern length n, the

complexity drops from O(n2) to O(n2/ log(n))

2.2.2. Bit-parallel algorithms

Another very successful technique employed to accelerate the computation of pair-wise
alignment is to exploit the intrinsic parallelism of the computer instructions. Nowadays,
any computer architecture offers simple arithmetical and logical instructions that can
be understood as parallel operators over a set of bits. These operations can be
performed using 32 or 64 bit words and, depending on the architecture, using SIMD
instruction from 128 to 512 bits long.

Here, the key insight is to encode the problem conveniently so as to benefit from simple
bit-wise instructions. Algorithms based on this idea are able to compute several cells of
the DP table – or states of the NFA – at once, enabling much faster computation of pair-
wise alignments.

Most notably, Myers in [Myers 99] proposed the computation of the DP matrix encoding
columns using bit-words and using bit-wise operations to fill the matrix. The so-called
Bit-Parallel Myers (BPM) takes advantage of the intrinsic parallelism within bit-wise
operations of any computer architecture (i.e logical, shift, and addition operations).

In this approach, columns of the DP matrix are encoded in differences among
themselves. As explained before, this reduces the number of possible values of each cell
to the values {−1, 0, +1}. Then, each cell of the matrix is modelled as a logic block. In this
way, the basic step of the processing takes a column of the DP and produces the next
column using bit-wise operations. This process iterates so as to compute the whole
matrix chunk-wise meanwhile the cells of each column are computed intrinsically in
parallel. Low-level details of the algorithm make it one of the quickest bit-wise
algorithms of its type [Myers 99; Hyyro 03].

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 29

The BPM algorithm has a worst-case complexity of O(|P||w|/b) – where b is the length
of the computer word used – and O(e|w|/b) on average as cut-off conditions can be
easily implemented within. What is more, this algorithm performs better than others of
its kind with long patterns. For this reason, it is often the choice of many real mappers
[Marco-Sola 12; Siragusa 13] based on filtering to verify candidates. Additionally, in
[Hyyro 02] an improved version of the BPM algorithm was proposed so as to reduce the
overall bit-wise operations performed.

2.2.3. SIMD algorithms

Using general scores, some techniques have been proposed to exploit SIMD instructions
in order to compute several cells of the DP matrix at once. The key idea is to allocate
several cells into a computer register and compute the DP matrix by blocks [Alpern 95].
In this way, these algorithms differ in that they arrange the cells into the registers (i.e.
by columns [Rognes 00], anti-diagonals [Wozniak 97] or interleaved [Rognes 11]). The
main challenge of these methods is to incorporate all the dependencies in the SIMD
computation without introducing mayor slowdowns. In this way, Farrar’s approach in
[Farrar 07] proves to be the most efficient, achieving from 2x-8x folds against previous
approaches. In practice, this method is widely used and some mappers based on SWG
distance implement it [Langmead 12; Li 13].

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 30

3. Main bioinformatics acceleration proposals

3.1. Wavefront alignment algorithm to accelerate sequence alignment on GPU
platforms

One of the most relevant proposals presented during the project is the new Wavefront
Alignment algorithm (WFA) [Marco-Sola 21]. The WFA algorithm proposes an alternative
encoding of the DP-matrix and an efficient algorithm to compute partial alignments of
increasing distance. As a result, the WFA algorithm only needs to calculate a small
number of DP-matrix cells to find the optimal alignment. This way, WFA exploits
similarities between sequences to reduce the time complexity to O(ne), being n the
sequence length and e the optimal edit-distance, reducing the memory requirements to
O(e2).

Until recently, adaptive-band methods seek to heuristically delimit the alignment path
to avoid computing DP cells whose score is too high. Compared to them, the WFA
algorithm naturally computes cells of the DP matrix by increasing score without
introducing further complexities. Due to its simplicity, the WFA algorithm can be easily
vectorized using SIMD instructions, as opposed to traditional DP-based algorithms.
Moreover, data dependencies can be automatically understood by modern compilers to
transparently issue SIMD instructions for any supported vectorial architecture.
Furthermore, when aligning moderately long sequences (i.e., less than 255 bases), the
WFA can encode diagonal offsets using 8-bit integers, which not only enhances SIMD
performance but also further reduces the memory footprint.

3.2. Wavefront-GPU

Our implementation provides exact edit-distance alignment (i.e., not heuristic),
outperforming other state-of-the-art methods. Also, we present the piggybacked
backtrace strategy, a novel optimization technique that dramatically reduces the
amount of memory needed for aligning sequences. Not only this technique requires
storing only two wavefronts, it also makes the alignment generation faster.

Additionally, we implemented a high-performance sequence packing kernel that allows
block-wise comparisons between sequences. This accelerated operation significantly
improves one of the most time-consuming operations of the WFA (the extend operator).
Moreover, our implementation is fully asynchronous and overlaps compute kernels and
memory transfers to accelerate the algorithm execution, hiding memory transfer
latencies with computation

All in all, our implementation represents an efficient solution for applications that
require fast computation of exact edit-distance alignment of large DNA sequence
datasets.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 31

3.3. Wavefront-FPGA

Another bioinformatics proposal is the acceleration of the WFA algorithm in FPGA
platforms. In a hardware/software co-designed scheme, the FPGA accelerator will
compute the alignment of pairs of sequences and generate the results in a compacted
form that eases CPU-FPGA communication. Then, the CPU threads unpack the
compacted forms to achieve the final results in parallel.

The FPGA accelerator design is composed of multiple aligners that collaboratively
compute the sequence alignments. The proposed design of the aligners allows a
configurable maximum read length and error score between the reads. Thus, they can
be adapted to the characteristics of the reads generated by different sequencing
machines and technologies. These design parameters determine the resources required
by each aligner and, thus, the number of parallel aligners that can be placed in the FPGA.

Sequence analysis starts by CPU parsing the input files and storing them in the memory.
Then, the FPGA reads the data, computes the alignments by iteratively performing the
extend and compute steps, and writes the results to the memory in compact CIGAR
form. After that, multiple CPU threads read and check the FPGA results and finish the
backtrace step by unpacking the compact CIGARs to full CIGARs.

In our experiments with the reference CPU-only implementation of the WFA algorithm,
the extend, compute and backtrace steps are responsible for around 50%, 45% and 5%
of the total execution time, respectively. Hence, offloading the extend and compute
steps to the FPGA is crucial to accelerate the algorithm. In addition, offloading the
backtrace step to the FPGA is also beneficial because, although this step has a small
weight on the total execution time, it requires reading the whole data of all the
wavefronts. Thus, to minimize bandwidth-bound data transfers between the CPU and
the FPGA, the presented accelerator innovatively divides the backtrace step in two
parts, one in the FPGA that computes the CIGARs in a compacted form of only 8 bytes,
and one in the CPU that unpacks the compact CIGARs and generates the full CIGARs.

The FPGA design is composed of three main modules:

• The Aligner module: implements the main computational steps of the WFA
algorithm. A configurable number of Aligners can be instantiated in the design
so they process alignments in parallel.

• The Extractor module: distributes sequences among the aligners
• The Collector module: gathers results from the aligners.

3.4. Pre-alignment filters on FPGA platforms

There are some strategies to map sequences into a reference genome since all
individuals from the same species share almost all the genome except a very small
percentage due to mutations and evolution. Read mappers also must consider
sequencing errors introduced by sequencers. Considering the differences between the

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 32

reads and the reference, the mapping cannot be based on exact string matching. The
alternative is to use approximate string-matching algorithms to compute an estimation
of the distance between the strings being compared (the lower the better) or their
alignment or similarity score (the higher the better).

In this approach, some short subsequences, called seeds, are extracted from the reads.
The seeds are used to search for exact matches in the reference. Many candidate
locations are obtained from this first step, but the number is orders of magnitude
smaller than the original possible locations. Then, the whole read is compared against
an extended search context around the candidate locations using approximate
matching. The locations from all candidates that match within a lower distance than a
given threshold are finally selected as possible mappings.

The drawback of this solution is that multiple candidates are evaluated for every read,
and almost all of them are discarded, incurring in a considerable computational cost that
goes to waste. There are some proposals to reduce part of this excessive computation
defining a new sequence processing stage commonly known as pre-alignment filtering.
These filters quickly discard pairs of sequences that are too different and avoid
computing the approximate distance between them.

The algorithmic simplicity of pre-alignment filters and the data parallelism of the large
number of candidates’ evaluation makes them very adequate for their implementation
in heterogeneous computing accelerators such as GPUs and FPGAs.

We have implemented several pre-alignment filters in GPU and FPGA accelerators to
evaluate the performance impact of their use in a genomic analysis pipeline:

• Implementations of three state-of-the-art FPGA-based inexact pre-alignment
filters (SHD [Alser 17], Shouji [Alser 19], and Sneaky-Snake [Alser 21]) and two
exact pre-alignment filters (Banded-Lev and Banded-Myers [Myers 99]).

• Analysis of the relationship between accuracy and performance of pre-alignment
filters.

3.5. ISA SIMD Vector Extensions for bioinformatics applications

Vectorization is a vital tool for improving the performance of code running on modern
CPUs. It is the process of transforming an algorithm from performing on a single value
at a time to operating on a larger set of values at once. Modern CPUs provide explicit
support for vector operations where a single instruction is applied to multiple data (i.e.,
SIMD). There is a range of alternatives and tools for implementing vectorization. An
established way to perform vectorization is using vector intrinsics.

Our proposal is to study and evaluate the case of using Advanced Vector Extensions
(AVX) to vectorize and accelerate the wavefront WFA algorithm. We explore the use of
AVX2 and AVX-512. This ISA extension provides 32 512-bit wide registers [zmm0,

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 33

zmm31] and can perform single instruction multiple data (SIMD) instructions over
vectors of 512 bits.

Three primary vector data types are specified. First is m512, which accounts for a 512-
bit vector containing 16 floats. Then we have m512d, which describes a 512-bit vector
containing eight doubles. Finally, we have m512i 512-bit vector containing integers. An
integer vector type can contain any type of integer, from chars to shorts to unsigned
long longs. An m512i may contain sixty-four chars, thirty-two shorts, Sixteen ints, or
eight longs. These integers can be signed or unsigned.

Sequence alignment kernel of most common tools is based on traditional DP-based algo-
rithms, like Smith-Waterman-Gotoh (i.e., KSW2 [Li 18]), which require quadratic time
and memory on the length of the sequences. As a result, the computational
requirements of classical DP-based approaches quickly become a critical performance
bottleneck, and most of these methods fail to scale with longer read lengths. Moreover,
intrinsic dependencies on the DP recurrences limit the effectiveness of vectorization
approaches.

We propose the utilization of the WFA algorithm to replace classical DP-based alignment
algorithms as it can be effectively vectorized using SIMD instructions. Both stages of the
WFA algorithm (i.e., extend and compute) are suitable for vectorization. The first stage
(WFA compute) can be easily vectorized using the auto-vectorization features of modern
compilers. However, the second stage (WFA extend) requires a fine-tuned tailored
vectorized implementation.

By utilizing the vectorized WFA algorithm we can accelerate the genome-mapping tools
(Minimap2 and Bwa-Mem2) that use the widely-used DP-based algorithm KSW2, for
their alignment step.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 34

4. Main performance results

4.1. Wavefront algorithm WFA

We have evaluated the performance of WFA algorithm in comparison with commonly
used libraries that implement optimized versions of well-known pairwise alignment
methods configured to generate global alignments. We have used three categories:
'exact gap-affine' for exact algorithms using gap-affine penalties, 'banded gap-affine' for
approximate algorithms that use gap-affine penalties, and 'others' for exact methods
that use other penalty models.

Datasets include a list of 100.000 short read sequences from Illumina HiSeq 2000, and
25.000 ONT MinION long read sequences. Also, we simulated several datasets of various
lengths (i.e., 100, 1K, 10K and 100K bases), with different error rates (i.e., d=1, 2, 5, 10
and 20% error rate) by means of randomly adding mismatches and indels. For every
dataset, we select as many sequences as needed, so that each of them contains a total
of 10 million bp.

Tests were done on an Intel Xeon Platinum 8160 equipped with 96 GB of RAM, running
SuSE Linux Enterprise Server.

Table 1 summarizes the execution time performance results obtained for all the
algorithms evaluated using real and simulated datasets.

Table 1: execution time performance of sequence alignment algorithms

On real datasets, the WFA performs many times faster than other methods. Aligning
HiSeq sequences, our method is 200–300 times faster compared to traditional DP
algorithms, and 20–40 times faster than the adaptive-band methods. Similarly, when
aligning ONT sequences, the WFA performs 28–200 and 6–7 times faster than DP
algorithms and adaptive-band methods, respectively. Moreover, it is several times
faster than methods that only compute the alignment score.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 35

When aligning simulated datasets, WFA methods consistently out-perform other
algorithms. Overall, WFA and adaptive-band methods are faster than classical DP
algorithms. As the read length increases, Parasail [Daily 16] and SeqAn’s[Rahn 18]
implementations require impractical running times. Notably, BitPAl [Loving 14] and
ParaBand [Daily 16] running times remain reasonably low, but their results are limited
to the alignment score. Altogether, these methods prove to be completely insensitive
to the error between the sequences. For that reason, WFA methods achieve remarkable
speedups when the error rate remains moderate (i.e., d= 1–5%). For instance, compared
to ParaBand, WFA methods run up to 13 and 78 times faster for error rates of 1 and 5%,
respectively; and up to 138 and 814 times faster compared to BitPAl for the same error
rates.

On the other hand, WFA methods prove to be generally faster and more accurate than
adaptive-band methods. Although these adaptive algorithms prove to be superior to
classical approaches, WFA methods scale better with both the sequence length and the
error rate. Executions of the KSW2 library consistently take between 2 and 510 times
longer than the WFA. In the demanding scenario of aligning reads of 100K bases at just
1% of divergence rate, WFA runs more than three orders of magnitude faster than the
KSW2 algorithms.

In general, as the error rate increases, adaptive-band methods either take longer to
finish, like KSW2-Z2 and KSW2-D2, or become insensitive reporting suboptimal
alignments, like Gaba. Notably, only the WFA methods could successfully align all
datasets of 100K bases, whereas other methods took an unreasonable amount of time
or failed. Moreover, WFA could finish all the executions in less than 7 seconds achieving
the maximum possible recall; that is, reporting 100% of the optimal alignments.

4.2. Accelerated wavefront results and experimentation

To provide a review of the final performance of the methods developed during the
project, we present an analysis of the alignment of 10 million sequences considering
most relevant parameters as sequence length and error rates. Results shown in
summary table 1 provide total execution time and data transfer times between host and
device.

We performed the experimental evaluation of our solution on an IBM Power9 processor
(20 cores with 4 threads per core), equipped with an NVIDIA V100 GPU with 16GB of
HBM2 memory connected through NVLink.

We used synthetic datasets consisting of 10 million sequence pairs of lengths 150, 300,
and 1000 nucleotides, and error rates of 2%, 5%, and 10%. For comparison, we selected
representative and widely used libraries and tools from the state-of-the-art. We focused
on those CPU and GPU implementations that stand out in terms of performance or
implement the latest algorithmic approaches.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 36

For the CPU evaluation, we selected Edlib [Sosic 17]; WFA, an optimised CPU version of
the WFA [Marco-Sola 21] adapted to the edit-distance; BPM, a highly optimised version
of the BitParallel Myers algorithm [Myers 99]; and the O(ND) algorithm [Myers 86] used
at the core of the Linux diff tool. All CPU executions were performed using 80 threads,
as the best performance (execution time) is obtained with this number of threads.

From the multiple GPU implementations available, we have selected those that could
be deployed, executed without faults, and had a competitive execution time. In
particular, we evaluated two methods from NVBio [Subtil 15] framework, the
WmCudaTile algorithm from xbitpar [Tran 16], and the highly optimised GASAL2 [Ahmed
19].

Overall, results show that GPU WFA accelerated version executes 2.9-265 times faster
than the CPU-based methods and 8-56 times faster than other GPU implementations.

Compared to established CPU alignment algorithms, results show an acceleration of 24-
102 times faster than the BPM algorithm and 19-100 faster than the O(ND)
implementation. Similarly, we obtain speedups of 31-265 compared to Edlib. Compared
to the CPU implementation of the method developed, our GPU implementation delivers
3-9× times more performance. In particular, the speedups obtained in GPU platforms
increase with higher alignment error rates as the wavefronts increase in size and more
wavefront computation can be done in parallel.

Regarding the existing GPU algorithms, our proposal outperforms the widely used NVBio
library, achieving speedups of 2.5-7.4 times compared to NVBio’s classical DP-based
implementation and speedups of 4.5-7.2 times compared to NVBio’s BPM. Compared to
wmCudaTile, eWFA-GPU achieves up to 12 times speedup for short sequences (i.e., 150
nucleotides) and up to 56 times speedup for longer sequences. Compared to GASAL2,
eWFA-GPU is 10-30 times faster.

In general, our proposal execution time scales better with increasing sequence length
values, compared to the other GPU implementations. In particular, the performance of
DP-based methods, like GASAL2, is strongly limited by the sequence length. Ultimately,
aligning long sequences with GASAL2 becomes impractical (e.g., 1000 nucleotides or
more). For a fair comparison, it is important to acknowledge that GASAL2 implements
the gap-affine distance, which is more complex and costly than computing the edit-
distance alignment.

Unsurprisingly, DP-based implementations (i.e., BPM, Edlib, NVBio, and GASAL2) are
insensitive to the alignment error, performing the same number of computations to
align similar sequences as to align very divergent ones. As a result, the performance of
classical DP-based algorithms is heavily constrained by the sequence length and not by
the sequences homology. For that reason, some tools, like Edlib, implement heuristics
that prune the DP computations at the expense of potentially missing the optimal
alignment (note the reduction in the execution time when aligning sequences of 1000
nucleotides with 5% error rate).

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 37

In contrast, error-sensitive methods, like our proposal, perform faster when aligning
highly similar sequences, exploiting similarities between the sequences to accelerate the
alignment process. These methods are only constrained by the nominal number of
differences between the sequences.

As a summary, in table 2, we provide a view of the alignment times for an input of 10
million alignments. Results show edit-distance computation and full alignment
execution times.

Table 2: summary of performance of methods for a 10 million alignments input.

4.3. Wavefront-FPGA

We have evaluated the proposed WFA accelerator with different designs for typical read
lengths and error score values on a high performance system with a POWER9 CPU and
2 FPGAs.

We provide performance results of using a POWER9-based system with 512GB of RAM
and 2 FPGA boards. The POWER9 CPU has 16 cores with 4 threads per core running at
2.3GHz, and it is connected to 2 ADM-PCIE-9H7 FPGA boards with OpenCAPI, which
provides coherent access to the host memory from the FPGAs and data transfer speeds
of up to 22GB/s. The FPGAs are Xilinx Virtex UltraScale Plus XCVU37P-2E (FSVH2892),
which run at 200MHz and have 2607k FFs, 1304k LUTs, 9024 DSPs, 70.9Mb BRAMs and
270Mb URAMs each.

We randomly generate a list of input sets with different maximum sequence lengths and
K values and we feed them to their corresponding FPGA design. Each input set contains
10 million pairs of sequences with random mismatches, insertions and deletions. Note
that, given a maximum sequence length and K, an FPGA design can correctly process any
input containing shorter sequences for smaller Ks. Nevertheless, a tailored instantiation
requires less space in the FPGA and maximizes the number of aligners that can fit in the
FPGA.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 38

Compared to a reference multithreaded CPU implementation of the traditional Smith-
Waterman-Gotoh, the WFA-CPU achieves speedups from 8.4 to 53.3 times for the input
sets we consider, and the proposed accelerator outperforms it by 42.6 to 383.8 times
with 1 FPGA and by 76.6 to 634.3 times with 2 FPGAs. In addition, compared to a Banded
Smith-Waterman heuristic method that does not perform the backtrace calculation, the
proposed WFA accelerator achieves speedups from 37.4 to 93.5 times with 1 FPGA and
from 55.9 to 154.8 times with 2 FPGAs for the same input sets considered in this work.

It is also important to mention the achieved improvement in energy consumption of the
different FPGA designs compared to the reference WFA. To report meaningful power
consumption measurements, in this experiment we repeat the alignment of the same
input set several times so the fastest execution takes at least 30 seconds. For each input
set, the number of repetitions and the total amount of work to be performed is the same
in the WFA-CPU and the FPGA design. We use in-band readings from Linux to the OCC
(On Chip Controller) to measure the power consumption of the whole node (CPU and
FPGAs). Results show that the different FPGA designs consume significantly less energy
than the WFA-CPU, with energy improvements of 6.1 to 9.7 times with 1 FPGA and of
11.4 to 14.6 times with 2 FPGAs.

4.4. Pre-alignment filters on FPGA platforms

We have implemented the most-relevant FPGA pre-alignment filters of the literature
using HLS toolchains that can be executed through the OpenCL runtime. The designs can
be integrated easily in genomic datacenters with FPGA accelerators providing important
performance and energy efficiency improvements of several orders of magnitude with
respect to CPU-based Levenshtein distance computation.

We analyze the performance of the filters by executing synthetic benchmarks having 10
million sequences of length between 100 and 300 base pairs.

We report the throughput of FPGA HDL-based implementation in original papers and
the throughput of our best performing OpenCL implementation on the following
platforms:

• Intel Stratix 10 1SX280
• Intel Arria 10 10AX115N2 HARPv2 system.

We have analyzed the speedup factor with respect to the execution time of the
Levenshtein distance using Edlib with a single thread on an Intel Xeon Gold 6230 (0.314
MPairs/s computing edit distance using 100 bp and 0.094 MPairs/s obtaining the
backtrace).

Main results are shown in table 3, where we describe the performance of implemented
filters in the selected FPGA accelerator platforms.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 39

Table 3: filtering performance of 100bp in FPGA accelerator platforms

The results show that our OpenCL implementations on the external memory-based
accelerator D5005 is between 20% and 40% faster than the HDL coded solutions in the
literature, and more than 120% faster on the HARPv2 platform, which is based on a
shared memory architecture.

The maximum achieved throughput of 95.1 million base pairs/second including memory
transferences of the Banded-Myers filter is the highest reported to date for an exact
filter. Without considering memory transferences, the achieved throughput is even
significantly higher: 178.8 MPairs/s.

4.5. ISA SIMD Vector Extensions for bioinformatics applications

We want to provide a view of the performance impact of the vectorization of the
alignment phase of the common tools. For that, we have calculated the potential
speedups we could reach for the genome- mapping tools (Minimap2, Bwa-Mem2), if we
substitute their alignment algorithm (KSW2) with the vectorized WFA implementation.
Main results of the tests is shown in table 4.

We use real short and long sequence datasets (Illumina, PacBio, Nanopore) and four
simulated (D1, D2, D3, D4). KSW2 is the current version of KSW used in the genome
tools. WFA (no SIMD) represents the version of WFA where we do not use any form
vectorization. WFA (partial-SIMD) only uses auto-vectorization in the compute part of
the algorithm. WFA+AVX2 uses auto-vectorization in the algorithm’s compute part and
AVX2 vectorization intrinsics for the extend part. The WFA+AVX2 also uses auto-
vectorization in the compute part, using this time AVX-512 vectorization intrinsics. For
all the datasets, the AVX vectorized versions of WFA deliver the best results.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 40

Table 4: Execution Time of KSW and WFA vectorized implementations

The derived speedups indicate a significant improvement in execution time. The lower
speedup is 2.4 for the D4 dataset of short reads. The most significant speedup is equal
to 826.7, and we achieve it for the long sequence PacBio dataset-

By utilizing the vectorized WFA algorithm we can accelerate the genome-mapping tools
(Minimap2 and Bwa-Mem2) that use the widely used DP-based algorithm KSW2, for
their alignment step. Specifically, our evaluation indicated that our vectorized AVX
implementation achieves speedups from 2.4× up to 826.7× compared to KSW2. In
return, this can yield significant potential speedups for the genome tools mentioned
above, from 1.3 up to 2.9.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 41

5. References

[Ahmadi 12]: A. Ahmadi, A. Behm, N. Honnalli, C. Li, L. Weng, and X. Xie. Hobbes:
optimized gram-based methods for efficient read alignment. Nucleic acids research,
40(6):e41–e41, 2012.
[Ahmed 16]: Nauman Ahmed, Koen Bertels, and Zaid Al-Ars. 2016. A comparison of
seed-and-extend techniques in modern DNA read alignment algorithms. In
Bioinformatics and Biomedicine (BIBM), 2016 IEEE International Conference on. IEEE,
1421–1428.
[Ahmed 19]: Nauman Ahmed, Jonathan Levy, Shanshan Ren, Hamid Mushtaq, Koen
Bertels, and Zaid Al-Ars. “GASAL2: a GPU accelerated sequence alignment library for
high-throughput NGS data”. In: BMC bioinformatics 20.1 (2019), pp. 1–20.
[Alkan 09]: C. Alkan, J. M. Kidd, T. Marques-Bonet, G. Aksay, F. Antonacci, F.
Hormozdiari, J. O. Kitzman, C. Baker, M. Malig, O. Mutlu, et al. Personalized copy
number and segmental duplication maps using next-generation sequencing. Nature
genetics, 41(10):1061–1067, 2009.
[Alser 17]: M. Alser, H. Hassan, H. Xin, O. Ergin, O. Mutlu, and C. Alkan, ‘‘Gate-Keeper:
A new hardware architecture for accelerating pre-alignment in DNA short read
mapping,’’ Bioinformatics, vol. 33, no. 21, pp. 3355–3363, 2017.
[Alser 19]: M.Alser, H.Hassan, A.Kumar, O.Mutlu, and C.Alkan. ‘‘Shouji:Afast and
efficient pre-alignment filter for sequence alignment’’. Bioinformatics, vol. 35, no. 21,
pp. 4255–4263, Nov. 2019.
[Alser 21]: M. Alser, T. Shahroodi, J. Gómez-Luna, C. Alkan, and O. Mutlu,
‘‘SneakySnake: A fast and accurate universal genome pre-alignment filter for CPUs,
GPUs and FPGAs,’’ Bioinformatics, vol. 36, nos. 22–23, pp. 5282–5290, Apr. 2021.
[Apern 95]: B. Alpern, L. Carter, and K. Su Gatlin. Microparallelism and high-
performance protein matching. In Proceedings of the 1995 ACM/IEEE conference on
Supercomputing, page 24. ACM, 1995.
[Baeza-Yates 99]: Baeza-Yates and R. G. Navarro. Faster approximate string matching.
Algorithmica, 23(2):127–158, 1999.
[Burkhardt 03]: S. Burkhardt and J. Karkkainen. Better filtering with gapped q-grams.
Fundamenta informaticae, 56(1-2):51–70, 2003.
[Burrows 94]: M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. 1994.
[Daily 16]: Daily, J.: "Parasail: SIMD C library for global, semi-global, and local pairwise
sequence alignments". BMC Bioinformatics, 17, 81.
[Farrar 07]: M. Farrar. Striped smith–waterman speeds database searches six times
over other SIMD implementations. Bioinformatics, 23(2):156–161, 2007.
[Ferragina 00]: P. Ferragina and G. Manzini. Opportunistic data structures with
applications. In Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium on, pages 390–398. IEEE, 2000.
[Ferragina 09]: P. Ferragina, R. Gonzalez, G. Navarro, and R. Venturini. Compressed
text indexes: From theory to practice. Journal of Experimental Algorithmics (JEA),
13:12, 2009.
[Fonseca 12]: N. A. Fonseca, J. Rung, A. Brazma, and J. C. Marioni. Tools for mapping
high-throughput sequencing data. Bioinformatics, page bts605, 2012.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 42

[Fujiki 18]: Daichi Fujiki, Aran Subramaniyan, Tianjun Zhang, Yu Zeng, Reetuparna Das,
David Blaauw, and Satish Narayanasamy. 2018. GenAx: A genome sequencing
accelerator. In Proceedings of the 45th Annual International Symposium on Computer
Architecture. IEEE Press, 69–82
[Gargis 15]: A. S. Gargis, L. Kalman, D. P. Bick, C. Da Silva, D. P. Dimmock, B. H. Funke, S.
Gowrisankar, M. R. Hegde, S. Kulkarni, C. E. Mason, et al. Good laboratory practice for
clinical next- generation sequencing informatics pipelines. Nature biotechnology,
33(7):689–693, 2015.
[Grossi 03]: R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text
indexes. In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 841–850. Society for Industrial and Applied Mathematics, 2003.
[Hach 10]: F. Hach, F. Hormozdiari, C. Alkan, F. Hormozdiari, I. Birol, E. E. Eichler, and S.
C. Sahinalp. mrsfast: a cache-oblivious algorithm for short-read mapping. Nature
methods, 7(8):576–577, 2010.
[Hwang 15]: S. Hwang, E. Kim, I. Lee, and E. M. Marcotte. Systematic comparison of
variant calling pipelines using gold standard personal exome variants. Scientific
reports, 5, 2015.
[Hyyro 02]: H. Hyyro and G. Navarro. Faster bit-parallel approximate string matching.
In Annual Symposiumon Combinatorial Pattern Matching, pages 203–224. Springer,
2002.
[Hyyro 03]: H. Hyyro. A bit-vector algorithm for computing levenshtein and damerau
edit distances. Nord. J. Comput., 10(1):29–39, 2003.
[Jokinen 91]: P. Jokinen and E. Ukkonen. Two algorithms for approxmate string
matching in static texts. In International Symposium on Mathematical Foundations of
Computer Science, pages 240–248. Springer, 1991.
[Jokinen 96]: P. Jokinen, J. Tarhio, and E. Ukkonen. A comparison of approximate string
matching algorithms. Software: Practice and Experience, 26(12):1439–1458, 1996.
[Kehr 11]: B. Kehr, D. Weese, and K. Reinert. Stellar: fast and exact local alignments.
BMC bioinformatics, 12(9):S15, 2011.
[Kronrod 70]: M. Kronrod, V. Arlazarov, E. Dinic, and I. Faradzev. On economic
construction of the transitive closure of a direct graph. In Sov. Math (Doklady), volume
11, pages 1209–1210, 1970.
[Kukich 92]: K. Kukich. Techniques for automatically correcting words in text. ACM
Computing Surveys (CSUR), 24(4):377–439, 1992.
[Landau 89]: G. M. Landau and U. Vishkin. Fast parallel and serial approximate string
matching. Journal of algorithms, 10(2):157–169, 1989.
[Langmead 12]: B. Langmead and S. L. Salzberg. Fast gapped-read alignment with
bowtie 2. Nature methods, 9 (4):357–359, 2012.
[Li 13]: H. Li. Aligning sequence reads, clone sequences and assembly contigs with bwa-
mem. arXiv preprint arXiv:1303.3997, 2013.
[Li 18]: H, Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics,
34(18), 3094-3100.
[Loman 12]: N. J. Loman, R. V. Misra, T. J. Dallman, C. Constantinidou, S. E. Gharbia, J.
Wain, and M. J. Pallen. Performance comparison of benchtop high-throughput
sequencing platforms. Nature biotechnology, 30(5):434–439, 2012.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 43

[Loving 14]: Loving, J., Hernandez, Y., Benson, G.: "BitPAl: a bit-parallel, general
integer-scoring sequence alignment algorithm". Bioinformatics, 30, 3166–3173.
[Luk 17]: Ho-Cheung Ng, Shuanglong Liu, and Wayne Luk. 2017. Reconfigurable
acceleration of genetic sequence alignment: A survey of two decades of efforts. In
Field Programmable Logic and Applications (FPL), 2017 27th International Conference
on. IEEE, 1–8.
[Marco-sola 12]: S. Marco-Sola, M. Sammeth, R. Guigo, and P. Ribeca. The gem
mapper: fast, accurate and versatile alignment by filtration. Nature methods,
9(12):1185–1188, 2012
[Marco-Sola 21]: Santiago Marco-Sola, Juan Carlos Moure, Miquel Moreto, and
Antonio Espinosa. “Fast gap-affine pairwise alignment using the wavefront algorithm”.
In: Bioinformatics 37.4 (2021), pp. 456–463.
[Marx 13]: V. Marx. Biology: The big challenges of big data. Nature, 498(7453):255–
260, 2013.
[Myers 86]: E. W. Myers. A (nd) difference algorithm and its variations. Algorithmica,
1(1-4):251–266, 1986.
[Myers 99]: G. Myers. A fast bit-vector algorithm for approximate string matching
based on dynamic programming. Journal of the ACM (JACM), 46(3):395–415, 1999.
[Navarro 01]: G. Navarro. A guided tour to approximate string matching. ACM
computing surveys (CSUR), 33(1):31–88, 2001.
[Navarro 07]: G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM
Computing Surveys (CSUR), 39 (1):2, 2007.
[Needleman 70]: S. B. Needleman and C. D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal of
molecular biology, 48(3):443–453, 1970.
[Rahn 18]: Rahn, R., Budach, S., Costanza, P., Ehrhardt, M., Hancox, J., & Reinert, K.
"Generic accelerated sequence alignment in SeqAn using vectorization and multi-
threading". Bioinformatics, 34, 3437–3445.
[Rasmussen 06]: K. R. Rasmussen, J. Stoye, and E. W. Myers. Efficient q-gram filters for
finding all ε-matches over a given length. Journal of Computational Biology, 13(2):296–
308, 2006.
[Reuter 15]: J. A. Reuter, D. V. Spacek, and M. P. Snyder. High-throughput sequencing
technologies. Molecular cell, 58(4):586–597, 2015.
[Rognes 00]: T. Rognes and E. Seeberg. Six-fold speed-up of smith–waterman sequence
database searches using parallel processing on common microprocessors.
Bioinformatics, 16(8):699–706, 2000.
[Rognes 11]: T. Rognes. Faster smith-waterman database searches with inter-sequence
simd parallelisation. BMC bioinformatics, 12(1):221, 2011.
[Sankoff 72]: D. Sankoff. Matching sequences under deletion/insertion constraints.
Proceedings of the National Academy of Sciences, 69(1):4–6, 1972.
[Schulz 02]: K. U. Schulz and S. Mihov. Fast string correction with levenshtein
automata. International Journal on Document Analysis and Recognition, 5(1):67–85,
2002.
[Sellers 74]: P. H. Sellers. On the theory and computation of evolutionary distances.
SIAM Journal on Applied Mathematics, 26(4):787–793, 1974.

 DRAC- rendimiento de las aplicaciones y pipelines de análisis

DRAC WP-3 Rev. 01 / 15.11.22 44

[Siragusa 13]: E. Siragusa, D. Weese, and K. Reinert. Fast and accurate read mapping
with approximate seeds and multiple backtracking. Nucleic acids research, 41(7):e78–
e78, 2013.
[Siren 08]: J. Siren, N. Valimaki, V. Makinen, and G. Navarro. Run-length compressed
indexes are superior for highly repetitive sequence collections. In International
Symposium on String Processing and Information Retrieval, pages 164–175. Springer,
2008.
[Sosic 17]: Martin Sosic and Mile Sikic. “Edlib: a C/C++ library for fast, exact sequence
alignment using edit distance”. In: Bioinformatics 33.9 (2017), pp. 1394–1395.
[Subtil 15]: Subtil N., Pantaleoni J. NVBIO. https://nvlabs.github.io/nvbio. Accessed:
2022-07-12. 2015.
[Tran 16]: Tuan Tu Tran, Yongchao Liu, and Bertil Schmidt. “Bit-parallel approximate
pattern matching: Kepler GPU versus Xeon Phi”. In: Parallel Computing 54 (2016), pp.
128–138.
[Turakhia 18]: Yatish Turakhia, Gill Bejerano, and William J Dally. 2018. Darwin: A
Genomics Co-processor Provides up to 15,000 X Acceleration on Long Read Assembly.
In Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 199–213.
[Ukkonen 85]: E. Ukkonen. Algorithms for approximate string matching. Information
and control, 64(1-3):100– 118, 1985a.
[Ukkonen 92]: E. Ukkonen. Approximate string-matching with q-grams and maximal
matches. Theoretical com-puter science, 92(1):191–211, 1992.
[Wagner 74]: R. A. Wagner and M. J. Fischer. The string-to-string correction problem.
Journal of the ACM (JACM), 21(1):168–173, 1974.
[Warren 13]: H. S. Warren. Hacker’s delight. Pearson Education, 2013.
[Weese 09]: D. Weese, A.-K. Emde, T. Rausch, A. Doring, and K. Reinert. Razers—fast
read mapping with sensitivity control. Genome research, 19(9):1646–1654, 2009.
[Weese 12]: D. Weese, M. Holtgrewe, and K. Reinert. Razers 3: faster, fully sensitive
read mapping. Bioinformatics, 28(20):2592–2599, 2012.
[Wozniak 97]: A. Wozniak. Using video-oriented instructions to speed up sequence
comparison. Computer applications in the biosciences: CABIOS, 13(2):145–150, 1997.
[Wu 18]: Yuanrong Wang,Xueqi Li,Dawei Zang,Guangming Tan,and Ninghui Sun.2018.
Accelerating FM-index Search for Genomic Data Processing. In Proceedings of the 47th
International Conference on Parallel Processing. ACM, 65.
[Wu 92]: S. Wu and U. Manber. Fast text searching: allowing errors. Communications
of the ACM, 35(10):83–91, 1992.
[Wulf 95]: W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of the
obvious. ACM SIGARCH computer architecture news, 23(1):20–24, 1995.
[Zaharia 11]: M. Zaharia, W. J. Bolosky, K. Curtis, A. Fox, D. Patterson, S. Shenker, I.
Stoica, R. M. Karp, and T. Sittler. Faster and more accurate sequence alignment with
snap. arXiv preprint arXiv:1111.5572, 2011.

