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Executive summary 
 
This report presents the final report of WP3 objectives and results achieved. We 
describe how High Throughput Sequencing (HTS) alignment algorithms must guarantee 
well defined, quantifiable, and reproducible accuracy. Mapping is a crucial stage in most 
resequencing pipelines and many other HTS analysis workflows. Good quality results 
generated by a mapper will heavily influence downstream analysis, ultimately leading 
to meaningful and accurate scientific findings in biological research and medical 
diagnostics. 
 
HTS calls for high performance algorithms that can cope with increasing yields in the 
production of genomic data. Even if a mapping tool delivers high quality results, they 
could be of no use if the time spent computing them is impractical. Therefore, sequence 
alignment algorithms have to keep up with the pace of HTS technologies. The objective 
of this project is to improve some relevant high-performance algorithms for sequence 
alignment that can be used in new acceleration computer architectures. Current project 
results show a relevant increment in the speed and quality of new methods proposed in 
the scope of the project. ISA extensions and hardware acceleration methods presented 
meet the requirements described in specific objectives of the project. 
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1. Genomic sequencing and bioinformatics processing pipelines 
 
The recent development of high throughput sequencing technologies (HTS) from Roche, 
Illumina, IonTorrent, Nanopore and Pacific bioscience companies has allowed the 
possibility of fast and affordable sequencing of any living organism. As the result of this 
technology, a single sequencer system produces millions of short sequences for each 
individual as a representation of the individual genome split in millions of short 
nucleotide sequences.  
 
From the point of view of data processing, scientists have established different protocols 
that describe how these sequences must be processed to build an individual genome 
first and then search for specific scientific analysis considering the differences in the 
individual data compared with reference genomes [Marx 13]. 
 
The quality of the results obtained becomes very relevant as downstream analysis 
depends on the accuracy of the previous steps. A poor methodology or wrong choice of 
protocols may produce errors that affect the whole analysis. The current state of the art 
is the development of large and complex analysis pipelines [Hwang 15] where many 
stages are still being into analysis to find better performance, accuracy and quality-
control mechanisms. Also, standardization and flexibility have become paramount in 
this field for every research effort [Gargis 15] 
 
Challenges to be solved involve the processing of the data and the quality assurance of 
the results obtained. As modern sequencing technologies become more affordable and 
produce better quality results, the stress is being put in the computational analysis of 
the datasets. The scientific community needs strong good quality methods, algorithms, 
tools and pipelines that make a good use of computational resources to improve the 
current bottleneck of genomic data analysis. 
 
High-throughput sequencing (HTS) principally denotes those technologies capable of 
sequencing in the order of millions of reads per run, relatively quickly (from a few days 
to several hours) at very low price (less than $1 per million bases). Using them, we can 
deep-sequence a genome (cover every base of a genome with a large number of reads) 
producing massive amounts of genomic data. These techniques are often called massive 
parallel DNA sequencing as they rely upon millions of reactions run simultaneously to 
achieve very high yields of production [Reuter 15], [Loman 12] 
 
HTS alignment algorithms have to guarantee well defined, quantifiable and reproducible 
accuracy. Mapping is a crucial stage in most resequencing pipelines and many other HTS 
analysis workflows. Good quality results generated by a mapper will heavily influence 
downstream analysis, ultimately leading to meaningful and accurate scientific findings 
in biological research and medical diagnostics. 
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HTS calls for high performance algorithms that can cope with increasing yields in the 
production of genomic data. Even if a mapping tool delivers high quality results, they 
could be of no use if the time spent computing them is impractical. Therefore, sequence 
alignment algorithms have to keep up with the pace of HTS technologies. They have also 
led the development of many new analytical tools for measuring important biological 
processes (e.g. variant calling, splicing, detecting protein binding, gene annotation and 
expression, copy number variation, and more). 
 
The objective of this project is to improve some relevant high-performance algorithms 
for sequence alignment that can be used in new acceleration computer architectures. 
 
As bioinformatic applications evolve, their scope is increasing and becoming ever more 
complex. For that reason, applications cannot be fully understood without context and 
must be studied in the general view of large analysis pipelines involving very different 
components. Current HTS data analysis pipelines consist of several steps and involve 
numerous tools. Generally, these analysis pipelines are divided into three stages: 
primary, secondary, and tertiary analysis.  
 
Primary analysis consists of machine specific steps to call base pairs and compute quality 
scores. Basically, the base calling step converts raw sequencing signals from the 
sequencer into bases (i.e. A,C,G,T, and N for unknown calls). Additionally, this stage is 
expected to deliver a quality metric of the calling step. For this, quality values are 
assigned to each base call to estimate the likelihood of an erroneous call at that base. 
 
Secondary analysis pursues the reconstruction of the original genome using the reads. 
This can be achieved by means of or de-novo assembly techniques resulting a list of 
sequences aligned against a reference genome (read mapping). 
 
Finally, tertiary analysis main aim is to give interpretation of the results produced by the 
secondary analysis. Sometimes this analysis integrates data coming from multiple 
experiments and samples. Examples of this analysis are gene annotation, differential 
expression studies, alternative splicing studies, detection of rare variants, association 
studies etc. 
 
1.1. Approximate string matching for genomic sequences 
 
Full-text self-indexes have become very common because of the latest developments in 
HTS technologies. Essentially, these data structures address the challenge of indexing 
genome-scale references on computers reducing the need of memory. Full-text indexes 
can even be coupled with compression algorithms in order to generate compressed full-
text self-indexes, thus reducing memory requirements even further [Navarro 07] [Grossi 
03] [Ferragina 09] [Siren 08]. 
 
From the list of common data structures to store full-text self-indexes the most relevant 
for genomics data processing are succinct data structures. These indexes aim to perform 
fast searches over massive amounts of data stored in little space. 
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The first structure of relevance is the suffix array SAT[0..n-1] of a text T. It is an array 
containing all the starting positions of the suffixes of T sorted in lexicographical order.  
 

 
 
Figure 1-1: suffix array of the text T=GATTACA$, where $ denotes the end of the text. 

The character "$" is smaller than any other symbol belonging to the alphabet 
 
Note that any substring P of the text T is at the same time a prefix of a text suffix. In this 
way, any pattern P can be binary searched over the suffixes of SA in O(m log(n)) time as 
each step in the binary search requires comparing up to m symbols between the pattern 
P and the corresponding text suffix. 
 
The Burrows Wheeler Transform (BWT) [Burrows 94] is a fundamental concept in the 
field of succinct and compressed full-text indexes. The BWT is a permutation of the 
original text which has useful properties when one has to implement not only 
compression, but also string searching. BWT arranges together characters followed by 
the same context. In most cases, this leads to runs of the same characters which makes 
the BWT permutation susceptible to being easily compressed.  
 
Beyond the compression features, the BWT transform leads to a transformed text that 
depicts useful properties for string searching. To explain those properties we need to 
define the rank function rank(c,i) and the accumulated counters C[a]. 
 

• rank(c,i) is defined as the occurrence function over the suffix of Tbwt from 0 to i. 
 

rank(c,i) = occ(c, Tbwt[0..i]) 
 

• C[a], where a ∈ Σ, is an array containing the number of characters in text T that 
are smaller than a. 

𝐶[𝑎] = 'occ(c, T), ∀a	 ∈ 	T
	

"#$
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The FM-index [Ferragina 00] exploits the BWT transform to build compressed text 
indexes. In the end, they figured out a way of exactly searching patterns using the BWT 
text and some auxiliary data structures. At the same time, they proposed compressing 
the BWT text so as to reduce the index space requirements to O(n) − bits, which in 
practice can index the 3GB of the human genome in less than 1GB depending on the 
compression algorithms. Despite their compression properties, most current FM-Index 
designs do not compress the BWT for the sake of providing fast query accesses as the 
overall memory usage without compression is quite reasonable in practice – about the 
same size of the text encoded in ASCII. 
 
LFc function 
To search for an exact pattern, the FM-Index uses two sentinels to delimit an interval 
containing all the suffixes that have the pattern as a common prefix. The main idea 
behind the FM-index is to use this LF function to backward search a pattern by iteratively 
updating two sentinels and exploiting the properties of the BTW. 
 
input: P pattern, TBWT, C[] 
output: SAT interval for P 
begin 
 lo = 0 
 hi = n - 1  
 for j = m - 1 to 0 do 
  c = P[j] 
  lo = C[c] + rank(c, lo -1) + 1 
  hi = C[c] + rank(c, hi) 
 end 
 return(lo, hi) 
end 
 
In this manner, the backward search delimits the SAT rows that exactly match a given 
pattern in O(m) time. Moreover, we can compute the number of matching positions by 
subtracting the sentinels at any point of the search (i.e. occ(P, T ) = hi − lo), without 
computing the actual matching positions in the text. In case lo > hi, we know that there 
is no exact match for the given pattern. 
Note that once the SA interval for a given pattern is known, all the positions inside its 
range are encoded in SA-space. That means that, for a given i-th row the MT matrix we 
lack the corresponding position in the text (i.e. SAT[i]). In order to decode positions from 
SA-Space to Text-Space we need to unwind the BWT until a known corresponding 
position is reached. In a trivial case, we would traverse the text backwards, applying the 
LF function s times, until the first row is reached (i.e. beginning of the text T). At that 
point we would know that the source i-th row corresponds to s suffix of the text. 
 
1.2. FM-index elements 
 
The FM-index consists of the BWT of the text and some auxiliary data structures used to 
accelerate the computation of the LFc function, decode positions from SA-space to Text-
space and fetch substrings of the original text. 
 



                     DRAC- rendimiento de las aplicaciones y pipelines de análisis 

DRAC WP-3   Rev. 01 / 15.11.22 10 

The first structure to consider is the C[] array used to accelerate the computation of the 
LFc function. This C[] array C[a ∈ Σ] stores the accumulated occurrences of each 
character in the text. In addition, the FM-index stores partial counters interleaved with 
the BWT text to accelerate the computation of the rank function. In this way, the BWT 
text is divided into equal blocks of b characters (b is the block length). 
 
Each FM-Index block bi, as in figure 1-2, contains b characters of the BWT (Tbwt

i) and the 
partial counters (ci [a ∈ Σ]) holding the count for each character until that position.  
 

 
Figure 1-2: FM-index block design 

 
The number of blocks in the FM-Index is equal to |b0,...,bn| = ⌈|T|/b⌉ and that, for a 
given character a, the content of the partial counters is equal to  
ci[a] = rank(a, i · b) = occ(a, Tbwt [0..i · b]). 
 
In this manner, computing rank() avoids counting occurrences up to this point and leaves 
the counting to potentially few characters past the counters. Depending on the FM-
Index layout, regular inclusion of counters in the index will speed up rank queries at the 
cost of more index space. This is a trade-off between space consumption and cost per 
LF-operation. 
 
Additionally, so as to accelerate the decoding of positions from SA-space to Text-space, 
any efficient FM-Index implementation stores samples of the SA. Depending on which 
sampling scheme is chosen, the average number of LF operations performed to reach a 
sampled position will vary. Also, different schemes allow for better average 
performances at the expense of extra index space. 
 
For many indexed approximate string matching algorithms, it is also very important to 
be able to retrieve any substring of the original reference text efficiently. Note that most 
alignment algorithms end up pairwise aligning the pattern against several candidate text 
regions. For that, efficient recovery of text regions is of key relevance. However, as it is 
initially formulated, the FM-Index can only retrieve text regions by means of iterating LF 
operations in O(|P|) time. Not only does this text retrieval mechanism perform several 
sparse index accesses before retrieving the whole text region, but each LF operation also 
involves several instructions just to retrieve a single character. 
 
Also, in many cases, from a given position p in SA-space we need to jump forward to 
start the LF text retrieval from several bases ahead. To do so, we need to decode that 
position into Text-space, increment the position p, and encode back to SA-space. As we 
can see, full-text built-in operations given by the FM-Index are very space efficient but 
quite convoluted for simple text queries. 
 
For these reasons, it is more convenient to store the full reference text together with 
the FM-Index. Despite the index space increasing notably, DNA text is rather suited to 
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being compacted – using 2 or 3 bits per character – reducing the space overhead. For 
instance, for the human genome with a length of approximately 3G nucleotides, the 
plain text could use up to 1GB of extra space. In this way, once we decode a position p 
into Text-space, accessing its corresponding text region becomes trivial and more 
efficient as all the region is stored contiguously in memory. 
 
1.3. Sequence alignment 
 
Sequence alignment denotes a series of bioinformatic algorithms whose purpose is to 
establish homology between genomic sequences. In order to do so, sequences are 
aligned –lined up with each other– so that the degree of similarity is maximised 
according to a given string distance function or score.  In the case of local alignment, we 
search for suitably matching parts of the different sequences. In the case of global 
alignment, we search for the degree of similarity of the full sequences.  
 
Sequence alignment is a general term and has multiple embodiments (as in pair-wise 
sequence comparisons, multiple sequence alignment, construction of evolutionary 
trees, etc). 
 
Considering the problem of mapping DNA sequences against a reference genome (a.k.a 
mapping to a genome), mapping to a genome aims to retrieve all positions from a given 
reference (collection of chromosomes, contigs or so) where a given DNA sequence 
(relatively small and several orders of magnitude smaller than the reference) aligns 
(using a given distance function and error tolerance). Ultimately, the goal is to retrieve 
the actual genomic location which has generated the short sequenced read at hand. This 
represents the most common case of use and we traditionally refer to it as to searching 
for the best (or "true") match. 
 
It is important to highlight that in general there will be more than one alignment, i.e. 
more than one location that might have plausibly originated the read (case of 
multimapping read). So, after finding all matching locations as stated before, the best 
candidates, that is, those showing highest sequence similarity to the original read, must 
be selected. In cases where no plausible locus of origin is found, or multiple equally likely 
candidates are found, the read must be flagged as ambiguous and possibly discarded. If 
one aims to retrieve all the equally distant matches having a minimum distance we say 
that one is performing an all-best search. If one simply wants to retrieve all matches 
within some error threshold we refer to an all-matches search. 
 
Sequence alignment plays a fundamental role in many experiments like resequencing as 
it is responsible for mapping each read in its sequenced locus. In this way, mapping tools 
must pick out the most likely source location in the reference genome allowing certain 
error divergence from it. It is important to highlight that for common resequencing 
experiments with 30x coverage of the human genome, HTS Illumina machines will 
generate 100 nucleotide x 900 million reads. Mapped against 3,000 million bases of the 
human genome, this constitutes a challenging problem of performance for modern 
mapping tools. 
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1.3.1. Error model 
All in all, sequence alignment is fundamentally about assessing homology between 
sequences. It is trivial to determine the homology of two sequences when both are the 
same (exact match). However, when it comes to similarity allowing errors, it is necessary 
to understand the very nature of the biological events that can transform a given 
sequence into another. 
 
Broadly speaking, an error model is defined by what is considered to be an error (error 
event) and a function to score them (distance function). Given two strings (w and u) an 
alignment is a combination of error events that can transform w into u (or vice versa). 
From all the possible alignments of w into u, those with the least distance are called 
optimal alignments (i.e. whose error events score least using the given distance 
function).  
 
In a way, optimal alignments aim to explain how to transform sequences with the least 
possible number of errors. Note that an error model induces an optimization problem 
to transform w to u – and vice versa – using a combination of error events that minimizes 
the distance function (alignment function). 
 
Error events are the most basic modifications that can transform a sequence into 
another sequence. They represent the most common biological events that can 
naturally explain sequence transformations. In this way, they model chemical changes 
that can change one nucleotide into other e.g. sequencing errors, duplication error, 
variations, etc.  
 
Most common error events are substitutions (a.k.a. mismatches; one sequence of 
nucleotides turned into another) and single nucleotide indels (insertions and deletions 
of single nucleotides). However, in certain situations other variations are proposed. For 
example, the swapping of two adjacent nucleotides (translocations). 
 
For a given collection of error events, a distance function scores them to measure 
relative distance between sequences and measure homology (e.g. conservation of 
biological sequences) or divergency (e.g. degree of error). There is a variety of distance 
functions to choose from depending on the specific context of application. 
 
Mismatch distance  
allows only for substitutions and scores each one using a penalty 1 – in the simplified 
definition – irrespectively of the nucleotide substituted. The resulting distance is equal 
to the total number of nucleotides mismatching in each sequence. This distance function 
is limited to sequences of the same length. 
 
Episodic distance  
allows only for insertions with a penalty of 1. Unlike the rest of the distances presented 
here, this distance is not symmetric (i.e it may be possible to convert one sequence into 
another but not vice versa). 



                     DRAC- rendimiento de las aplicaciones y pipelines de análisis 

DRAC WP-3   Rev. 01 / 15.11.22 13 

 
Longest common subsequence distance or Indel distance  
allows only for insertions and deletions (but not for substitutions). This distance function 
scores each single nucleotide indel with a unitary penalty. Thus, the indel distance 
between two sequences is equal to the total number of nucleotides that must be 
deleted and inserted to transform one sequence into another. 
 
Edit distance 
In general, this distance allows for any single edit operation (i.e. substitution, insertion, 
and deletion) penalizing unitarily each one. So that the resulting distance is equal to the 
total number of edit operations that it takes to transform one sequence into another. 
This is one of the most commonly used distance functions due to its simplicity, 
versatility, and because there are many efficient alignment algorithms based on it. 
Damerau–Levenshtein distance is a variation in which transpositions (swaps of two 
adjacent characters) are also allowed with a penalty 1.  
 
General scoring matrixes.  
In general, it is possible to define a function to assign a penalty to each nucleotide 
substitution, insertion of any given length, and deletion of any length. These tailored 
scoring matrixes aim to statistically model the frequency of certain errors. For example, 
in DNA substitution mutations are of two types: transitions (i.e. inter- changes of purines 
(A ↔ G) or pyrimidines (C ↔ T)) and transversions (i.e. interchanges of purine for 
pyrimidine bases). It is known that transition mutations are much more frequent in 
nature. To model this, transversions would be penalized more than transitions in the 
scoring matrix. As a result, optimal alignments following this scoring scheme would 
favour transitions, leading to a more plausible transformation between sequences. 
Another good example is the so-called Smith-Waterman-Gotoh distance where gaps are 
scored according to their length. 
 
 A useful insight regarding error models is to understand that the error does not 
necessarily have to be placed in one of the sequences. In a more general understanding 
of the problem, error events are just transformations between two sequences. Hence 
the term transformation operation seems more suitable. In principle, none of the 
sequence has to be erroneous and alignment between both simply leads to an 
understanding of its structural similarities. 
 
1.3.2. Alignment classification 
 
Depending on the distance function, and how it scores error events with respect to their 
relative position, the shape of the optimal alignment may be different. There is a widely 
accepted classification of alignment algorithms depending on how they score deletions 
at the ends of the sequences – and therefore the shape of the alignment induced that 
is shown in figure 1-3.  
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Figure 1-3. Types of sequence alignment 

 
Global alignment 
Most common alignment algorithms target global alignments which are considered the 
most natural form of pair-wise alignment. In this case, deletions/insertions at the ends 
of both sequences score as in any other position in the sequence. We say that the ends 
are not free and consequently must be aligned. For this reason, they are also known as 
“end-to-end” alignments. As a result, the final shape of the alignment spans throughout 
both sequences trying to match them whole. 
 
Local alignment 
By contrast, in local alignments we say that ends are free. This means that deletions at 
the beginning or end of the sequence do not count towards the distance function and 
thus trimming the sequence ends receives no penalty. These alignments tend to favor 
highly homologous alignments between local parts of the sequence as opposed to 
distant – and noisy – end-to-end alignments of the sequence. 
 
Semi-global alignment 
In cases where one of the sequences is much larger than the other, it makes sense to 
allow the smaller sequence to align end-to-end to a local region of the large sequence. 
This is a very common case when aligning relatively short HTS sequences to a relatively 
large reference genome. In this case, ends are free but only on the large sequence. 
Hence, trims on the large sequence are not considered (but they are on the smaller).  
 
1.4. Approximate String Matching 
 
Approximate string matching (ASM) refers to finding strings that match a pattern 
approximately (i.e. allowing for errors).  
 
The most used short-read technologies produce sequences in the range 75-300 
nucleotides, while a long read can be up to several thousand nucleotides long. In 
addition, the DNA alphabet typically has only 5 letters (that is the four bases A, C, T, G 
plus an additional symbol, typically N, to model uncalled/unknown bases). Furthermore, 
in short-read mapping one typically considers errors smaller than the 5% (but some long-
read technologies can get to 30%). Yet the most striking difference is probably the size 
of the reference text used. In bioinformatics, genome references can be several Gbases 
long (for instance the human genome is approximately 3 Gbases). On the other hand, 
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classical problems in ASM usually deal with databases of several megabytes – an order 
of magnitude smaller like word databases. 
 
1.4.1. Dynamic programming pair-wise alignment 
 
To illustrate one of the most fundamental algorithms for pair-wise alignment, we 
present the solution based on dynamic programming. This approach has been 
rediscovered over the years within the context of several different areas. Many studies 
of this method have produced many fundamental theoretical bounds for the problem 
and suggested several approaches to avoid unnecessary computations.  
 
Despite not being the fastest approach, it is without a shadow of a doubt the most 
flexible solution and the easiest to adapt to the many different distance metrics. 
 
Following Bellman’s principle of optimality, the minimum edit distance between two 
strings – v and w – can be computed using a dynamic programming algorithm. To avoid 
repeated computations given by the recursive formula, recursive calls are organised in 
a dynamic programing table of size (|w| + 1) × (|v| + 1). Algorithm shows how to 
compute this table. For instance, in following example we show the computation of the 
full dynamic programing table aligning the pattern: "GAGATA" against the text 
"GATTACA". 
 

 
Figure 1-4. Edit distance computation using dynamic programming 
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Figure 1-5: initial layout of edit distance between the example sequences 

 
The dynamic programing algorithm fills each cell based on the content of the upper, left 
and upper-left neighbors. In this way, it can progress column-wise from the left most 
column (initial conditions) to the last column. Likewise, it can perform the computations 
row-wise from the upper most row to the last row. Either way, this approach runs in 
O(|v|||w).  
 
However, if only the distance is required, computations can be confined to just one 
column – or row – and progress forward until the last column – or row – is computed 
and the alignment distance is known. As we can see in the example, the minimum edit 
distance between the string is 3 edit operations. Also, the path of the computations that 
lead to the minimum is highlighted in blue. 
 

 
Figure 1-6: path of the computation that leads to the minimum score alignment 

 
In the previous example shown in figure 1.6, the path of the computations that lead to 
the minimum is highlighted in blue. In order to recover the sequence of operations that 
aligns one string into the other, we simply have to follow the path that updates each cell 
from δe(6,7) to δe(0,0) (in this context usually called edit transcript). This process is 
known as traceback and, as we can see, can lead to multiple possible paths – all of them 
equally valid. 
 
1.4.2. Filtering algorithms 
 
Since 1990 filtering algorithms have been studied as a very effective approximate 
matching technique. They base their success on the observation that, for a reasonable 
choice of tolerated error degree, it is easier to look for regions of the text containing 



                     DRAC- rendimiento de las aplicaciones y pipelines de análisis 

DRAC WP-3   Rev. 01 / 15.11.22 17 

pieces of the pattern without errors rather than trying to align the pattern against every 
position of the text. Since looking for exact chunks of the pattern can be much faster 
than trying to do approximate matching with the whole pattern, filtering algorithms can 
quickly discard large regions of the text and perform much faster than other approaches 
in actual practice.  
 
For instance, while searching for the pattern P=GATTACA up to one error, we could 
inspect the text and quickly discard the regions that do not contain either one of the 
substrings s0 =”GATT” or s1 =”ACA”. Indeed, no matter where in the pattern the possible 
error is located, either s0 or s1 must occur in all patterns containing up to one error. 
In general, filtering techniques aim to filter out as many regions of the text as possible 
to reduce the search space being explored down to a few candidate regions. This 
approach can potentially avoid inspecting the whole text, often leading to algorithms 
that are sublinear in the length of T in most practical cases.  
 
A significant amount of research has been conducted in this area and a number of  
algorithms have been proposed for different applications and typical parameter ranges 
[Burkhardt 03; Weese 09; Kehr 11; Fonseca 12]. Furthermore, many filtering algorithms 
have been proposed and adapted for both online and indexed searches. As of today, all 
practical sequence alignment tools rely on filtering one way or another.  
 
Generally speaking, all filtering algorithms are based on partitioning the pattern in order 
to reduce the approximate string-matching problem needed to search for the individual 
parts. This partition of the pattern –known as filtering scheme– induces a set of 
conditions that any substring of the text has to satisfy in order to be a valid match. 
Afterwards, using an index of the text – indexed search – or the text itself – online search 
– all the candidate substrings are gathered and aligned against the pattern to discover 
the true matches. 
 
Traditionally, filtering algorithms are presented as just a pre-selection step to filter out 
regions of the text (candidate generation). In this way, filtering algorithms are unable to 
discover matches by themselves. Instead, a verification algorithm has to be coupled with 
them so as to compute the actual matches (i.e. align with distance below a given 
threshold). Figure 1.7 depicts the general filtering paradigm. 
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Figure 1-7: Filtering algorithm basic principles 

 
Filtering algorithm performance strongly depends on the balance between these two 
stages. Very restrictive filters can produce very few candidates at the expense of 
intensive computations meanwhile fast and nonspecific filters can produce too many 
candidates. Quite often, the selection of the algorithm in the verification step is 
overlooked under the assumption that previous candidate generation will have led to 
few candidates. Nevertheless, it is extremely important to understand that both steps 
have different complexities. For instance, in most practical scenarios, candidate 
verification grows quadratically with the length of the pattern, whereas candidate 
generation operates linearly. 
 
Filtering efficiency 
Back to filtering algorithms, specifically to the candidate generation step, we can 
encounter several cases depending on the nature of the candidates reported by the 
filter, as in figure 1.8. 

• True positive (TP); when the filter reports a candidate that aligns with the 
pattern. 

• False positive (FP) (type I error) or "false alarm"; when the filter reports a 
candidate that doesn’t align with the pattern. 

• True negative (TN); when the filter discards a region of the text that truly doesn’t 
align against the pattern. 

• False negative (FN) (type II error); when the filter discards a region that aligns 
against the pattern. 

 
Table 1.8: filtering candidates confusion table 

 
We define the sensitivity and specificity of a filter accordingly to this.  
Sensitivity (SEN) – a.k.a. true positive rate (TPR) – measures the proportion of candidates 
reported that are valid matches (w.r.t. the number of matches missed).  
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Specificity (SPC) – also called the true negative rate – measures the proportion of 
candidates that are correctly filter out (w.r.t. the number of valid matches incorrectly 
discarded). 

𝑆𝐸𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

 

𝑆𝑃𝐶 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 

 
Depending on the filtering algorithm, the number of discarded regions can be different 
– and consequently the overall computational cost. To evaluate the performance of a 
filter – and compare against others –, we commonly use the filtering efficiency (i.e. 
precision or positive predictive value; PPV) as the ratio between the number of matches 
found (i.e true positives) and the number of candidates produced by the algorithm (i.e. 
true positives + false positives). 

𝑓% =
𝑇𝑃

𝑇𝑃	 + 	𝐹𝑃 

 
It is important to note that the maximum number of true positives reachable is 
independent of the algorithm – but related to the content of the text and the pattern. 
Therefore, it is the number of FP that we would like to minimise – without increasing 
the filter complexity –, understood as the capability of the filter to reduce the noise (FP). 
 
Filtering algorithms final goal is to reduce the initial search space, like a reference 
genome, to a few matching regions. From this point of view, sequence alignment 
algorithms can be understood as filters. Each of them is given a candidate and a pattern 
and must discriminate their alignment  
 
Exact filters are algorithms capable of computing whether a given string candidate w 
aligns a given pattern P (within a maximum distant threshold e and for a given distance 
metric d()). These filters are full, sensitive and specific; never fail to report a valid match 
(FP = 0) and never report an invalid match as so (FN = 0). 
 
Approximate filters are not fully specific and often report false positives in the form of 
candidates that do not match the pattern (i.e. generate noise). There are many 
approximate filtering algorithms to choose from with different trade-offs between 
filtering efficiency and computational cost. But in general, these filters tend to be very 
lightweight and perform very well in practice.  
 
In turn, we can classify approximate filters as lossless or lossy filters; depending on 
whether they retrieve all valid matches (i.e. true positives) or fail to report complete 
results 
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1.4.3. Exact filters. Candidate verification techniques 
 
Most classical pairwise alignment algorithms fall into this category. Extensive research 
has been done in this area for many years [Needleman 70; Sankoff, 72; Sellers, 74; 
Wagner 74; Navarro 01]. In this way, dynamic programming (DP) approaches [Kukich 92; 
Ukkonen 85] explore the whole text and output only the matching positions (true 
positives). These types of algorithm should be classified as exact-filters as they return all 
matches with zero false positive rates. Despite being the most flexible solutions and 
delivering the best filtering efficiency, most of them are quite computationally 
expensive. This is the main reason to explore other kinds of filter more computationally 
efficient, though perhaps less accurate as they may report false positives. 
 
Since the formulation of the first algorithms to compute the pair-wise edit distance using 
DP, some alternative formulations of the problem and many improved solutions have 
been proposed. 
 
One of the most notorious revisions is the approach given by [Ukkonen 85] where the 
problem is formulated as finding the shortest path problem on a graph built on the text 
and the pattern. In the paper, Ukkonen presented basic theoretical properties of the DP 
table still exploited in modern algorithms. He formally proves that diagonals of the DP 
table are monotonically increasing from the upper-left to the lower-right cells. 
Moreover, adjacent cells value can differ at most by one. As a result, many algorithms 
exploit these properties towards computing only the band of the DP table where 
alignments up to e edit operations are confined. As a result, they drastically reduce the 
amount of computations needed to calculate the edit distance between two strings. 
 
Furthermore, these properties are exploited so as to compute edit distance e in O(e2) 
within algorithms denoted as diagonal transition algorithms. These algorithms aim to 
compute in constant time the cells where the diagonal values are incremented. These 
diagonals – so-called "strokes" – model segments that match exactly between two 
strings. Afterwards, strokes are joined to compute the optimal path which leads to the 
optimal alignment. In [Landau 89] Landau and Vishkin propose one of the first 
algorithms of this kind.  
 
Another remarkable algorithm exploiting these properties is proposed by Myers in 
[Myers 86]. Myers’ O(nd) algorithm – unlike many others – is able to report the optimal 
alignment in O(|P|e) time. Many other algorithms have been proposed in this line of 
research. 
 
Another formulation of the problem is given in the form of searching with an automaton 
[Navarro 01]. Using a non-deterministic automaton (NFA) transformation operations are 
modelled as transitions over a finite number of states. Each state is associated with a 
number of errors and a position of the pattern aligned. By introducing the letters of 
given string into the NFA, the final state becomes active if the string aligns the pattern. 
This computation can be done by means of simulating the NFA or by transforming the 
NFA into the corresponding deterministic automaton (DFA). 
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This idea was proposed in early publications like [Ukkonen 85] using a deterministic 
automaton. Later on, the computation of the automaton was further described and 
improved [Baeza-Yates 99; Wu 92]. Depending on the distance metric employed, there 
are solutions – like the levenshtein automaton [Schulz 02] – that perform fast in real 
scenarios. However, the challenging aspect of this approach is the exponential number 
of possible states that arises as the error increases. Hence, these algorithms are only 
practical for reasonably low error rates. 
 
1.4.4. Approximate filters 
 
In brief, these techniques are based on counting substrings in both the pattern and the 
candidate to assess similarity under certain error tolerance. In this way, these 
techniques are able to derive fixed sets of conditions that the candidates must satisfy in 
order to match the pattern. 
 
Counting filters work in two basic steps. First, they build a profile based on counting 
occurrences of q-grams in the pattern. Afterwards, they perform the same counting 
procedure on the candidate text. If the counting profile is similar – depending on the 
maximum distance allowed – then we can conclude with some confidence that the 
pattern and the candidate match. These techniques stand out because they are simple, 
yet very fast and achieve good filtration rates. 
 
Counting characters 
 
In the context of online filtering, the most basic version of this family is based on 
counting characters [Jokinen 96]. This simple filter holds the very essence of all the filters 
in this family. Basically, we first count the characters in the pattern and we build a 
histogram of the number of times that each letter of the alphabet appears in it. 
Intuitively, any region of the text matching the pattern has to contain a similar count of 
characters. Therefore, for each region of the text we count characters. In general, any 
text matching the pattern with e errors must have at least |P|−e characters from the 
pattern. Note that if the pattern and the text match perfectly, the counts must be exactly 
the same. Hence, we can state that if the count differs in at most e characters the 
candidate can be a valid match, otherwise it is not possible and can be filtered out. Note 
that the filter does not consider the relative ordering of the characters. Therefore, it is 
easy to see that it can potentially generate false positives. 
 
The computation of the pattern profile is O(|P|) and assumed to be amortized as we 
check multiple candidates for each single pattern. In that way, the filter complexity is 
dominated by the cost of checking the candidates which operates in linear time w.r.t. 
the candidate length (O(|w|)). 
 
Despite its simplicity, this simple filter can yield high filtration efficiency rates depending 
on the pattern length and the alphabet size. Note that a 26 character alphabet is much 
more diverse and restrictive than the DNA alphabet (i.e. Σ = {ACGTN}). In practice, this 
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filter is rarely used and it mainly serves as an introduction to logical extensions of this 
idea. 
 
Counting q-grams 
 
At this point, it seems natural to extend the idea of counting characters to count q-
grams. In fact, profiling larger components of the pattern increases the specificity of the 
filter. Q-gram filters are based on counting q-grams to discard candidates than contain 
less than a given number or q-gram occurrences [Jokinen 91; Ukkonen 92]. The basic 
idea behind q-gram filters is depicted in figure 1-9. As the figure shows, the maximum 
number of q-grams that each potential error can modify depends on the q-gram length. 
Therefore, for a given maximum error e there is a minimum number of q-grams shared 
by the pattern and any potential match. 
 

 
Figure 1-9: q-gram counting in a candidate 

 
In their first formulation, q-gram filters were used in the context of online searches. The 
linear cost O(|w|) of counting the q-grams of the pattern (i.e. histogram or profile 
creating) is amortised by the cost of subsequent computations of the q-gram lemma on 
the candidates. For that, the algorithm applies the q-gram lemma on a sliding window 
that traverses every candidate and determines if the candidate is accepted or filtered 
out. Counters are reused between shifts of the sliding window and therefore the 
algorithm takes O(|w|) in the worst case. 
 
Filtration efficiency of Q-gram filters strongly depends of the distribution of the 
candidates (i.e. string content), the length of the pattern, the length of the q-gram, and 
the maximum error. As with many other filtering techniques, there is little benefit in 
benchmarking its efficiency for generic random texts. Instead, it is more useful to base 
experiments on real application data. In general, with longer pattern lengths and longer 
q-gram lengths, the filter achieves better filtration efficiency. However, after reaching a 
certain pattern length, the filtration efficiency drops as q-grams at that length are not 
specific enough. Also, as the error rate increases, the filtration efficiency of q-gram filters 
decreases as it has to account for more errors. 
 
It is important to note that these filters are greatly limited by the g-gram length as the 
memory footprint increases exponentially requiring 4|q| counters (e.g. Using 32-bit 
counters, for q = 7 the counters occupy 64KB). Also note that memory consumption is 
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not the main limitation, but the penalties derived from randomly accessing potentially 
large regions of memory (e.g. cache misses, page faults, etc). 
 
Q-gram counting technique was adapted to be used in conjunction with indexes. Many 
q-gram specialized indexes have been proposed to accelerate computing the q-gram 
profile of certain regions of the reference text (e.g. overlapping blocks of text [Burkhardt 
03]). In any case, the basics of the approach remain the same; spotting a region of the 
text or candidate whose q-gram profile matches the one of the pattern as the g-gram 
lemma states. However, the indexed formulation of the algorithm allows skipping entire 
regions of the reference text at the expense of accesses to the index – and memory 
space devoted to the index. Note that in these cases the cost of building the index is also 
considered amortised. 
 
Q-gram filters are often used in real tools for sequence alignment. Notable examples are 
SWIFT [Rasmussen 06], STELLAR [Kehr 11], RazerS [Weese 09], and RazerS 3 [Weese 12]. 
In fact, many practical tools incorporate in different ways the basics of q-gram counting; 
namely Mr. Fast [Alkan 09], Mrs. Fast [Hach 10], Hobbes [Ahmadi 12], SNAP [Zaharia 
11], and many others. 
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2. Architectural design considerations 
 
2.1. FM-index architectural design 
 
One of the most important aspects of an efficient FM-index is the actual index lay-out 
in memory. As accessing the index is the key building block of any indexed search 
algorithm, the cost per access is going to be the major determinant of searching 
performance. 
 
An efficient FM-index design must provide a convenient trade-off between fast-memory 
access and computation. In more detail, to perform an LF computation we need to 
access the index to fetch the text, partial counters, and C[] array and compute the 
occurrences for a given character. In this way, an efficient design should enable fast 
memory access and a lightweight rank computation. 
 
From the memory standpoint, it is desirable to reduce the number of accesses so as to 
reduce the total memory bandwidth required per LF operation. But also, to efficiently 
access regions of memory in the order of gigabytes, it is very important to be aware of 
the penalties imposed by the memory wall [Wulf 95].  
 
The computational objectives are to maximize memory locality and minimize the 
number of failures in all the levels of the memory hierarchy (being TLB misses the least 
desirable).  
 
For that reason, architectural efforts propose ways of concentrating all the index-data 
associated with an LF operation in the same memory region and keep the overall index 
size as small as possible.  
 
From the computation standpoint, the main bottleneck of the FM-index search is 
counting occurrences of a character in a given FM-Index block of BWT text. For that, 
several factors must be evaluated like the encoding of the characters in the text bitmaps 
or the number of text bitmaps between partial counters. Furthermore, depending on 
the encoding, some layouts allow using SIMD instructions to enhance the rank 
computation. 
 
2.1.1. FM-index memory access pattern 
 
The backward search is probably one of least memory friendly algorithms and, in 
practice, is bound to generate a lot of cache misses and page faults.  
 
Experimental results show that the memory accesses of backward searches are far from 
depicting locality. However, these accesses are not random at all. At each step, the 
backward search delimits those suffixes from SAT prefixed by the pattern searched so 
far Pi..m−1. Each time a character P [i − 1] is added to the search, the two sentinels 
delimiting the search suffixes jump to another region of the SAT, this time, prefixed by 
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the new character and the previous prefix Pi−1..m−1. It is easy to see, that the accesses 
to the FM-index change from one region of the index to another depending on the next 
character added to the backward search. As presumably most of the characters of the 
pattern are different, each step of the backward search potentially jumps to a different, 
remote position of the FM-Index. Hence, the memory access pattern of the FM-Index is 
clearly not local at all. Furthermore, for genome-scale FM-Indexes, most accesses are 
bound to hit different cache blocks and a different operating system page.  
 
The first design decision to make is the definition of an FM-Index design such that each 
block bi fits entirely into a cache line. Fitting and aligning whole FM-Index blocks into a 
cache line objectives are: 
 

• one cache block has to be fetched to compute the LF operation (potentially 
incurring in just one cache miss),  

• minimize the memory bandwidth needed per LF call 
 
Here, the key insight is that, depending on the FM-Index design, it is preferable to add 
padding and waste index space for the sake of aligned accesses to cache blocks and page 
boundaries, rather than compacting the FM-Index blocks at the expense of failing twice 
when accessing blocks in the middle of two cache blocks – or even two system pages. 
 
At the same time, an overlooked feature of efficient FM-Index implementations involves 
the selection of architecturally friendly dimensions. For instance, note that any block 
size b for the FM-Index is theoretically possible. However, selecting b in such a way that 
Tbwt

i fits a computer word enables easier access and faster counting. For instance, using 
a 2-bits alphabet and allocating b = 32 characters in a 64 bits word.  
 
Furthermore, the power of two block lengths leads to power of two divisions to locate 
the FM-Index block at each LF operation. Since the power of two divisions and modules 
can be implementing shifts and masks, selecting power of two block lengths can avoid 
frequent and expensive machine instructions as divisions. Likewise, block counters ci can 
be squeezed into the domain of positions of the reference text length 
 
2.1.2. FM-index computational needs 
In terms of computation, the most expensive part of each LF call is counting the number 
of occurrences of a given character in a text block Ti

bwt. This strongly depends on the 
bitmap encoding and arrangement of the characters inside the block. For instance, a 
simple encoding of the characters packed would arrange one after another (i.e. Ti

bwt = 
c0 · c1 , ..., cb-1 ).  
This naive approach not only forces several convoluted masking operations before the 
actual occurrences can be properly counted, but can also potentially waste bits from a 
computer word if the alphabet size is not a power of two (e.g. an alphabet using 3 bits 
would waste 2 bits per 32 bits machine word; 76MB for the human genome). 
To avoid this, we could use a character bitmap representation – one bitmap per 
character – each using a computer word. In this case, counting occurrences are 
simplified to just shifting to remove the characters beyond the rank position and 
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counting ones (i.e. popcount). However, this representation grows in space linearly with 
the number of characters in the alphabet. 
 
For that reason, a more efficient design stores the bits of each character separated in 
different layers according to their significance; bit-significance layers encoding. For 
example, in the case of 3 bits per character, this encoding would store 3 separated words 
containing all the character’s bits grouped from least to most significant as seen in fig 
2.1. 
 

 
 

Figure 2.1: Bit-significance layers encoding 
 
In this way, counting characters becomes relatively simple by (1) negating some layers 
– depending on the LFc character –, (2) combining the result using bitwise AND, (3) 
shifting to remove the characters beyond the rank position, and (4) counting ones left 
in the bitmap.  
 
2.1.3. FM-index operators 
 
Just as important as the specific index layout, the actual implementation of the FM-
Index operators plays a fundamental role in the overall performance of indexed 
approximated search algorithms. For this reason, careful considerations at the time of 
implementing these functions can have great performance impact. Additionally, basic 
search algorithms often present opportunities to implement tailored operators that can 
exploit particular conditions and perform better than single unspecific operators. For 
this reason, this section presents practical considerations for implementing FM-Index 
operations and efficient tailored operators for particular search scenarios to reduce 
computations and obtain better performance. 
 
LFc operator 
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Presumably, the LFc operator is the most recurrent function within any approximated 
string matching algorithm based on top of the FM-Index. Within a real mapping tool, the 
LFc operator can get to be called billions of times. For that reason, an efficient 
implementation of this function is crucial to achieve a good overall performance. 
Moreover, modest implementation improvements can be reflected in the overall 
performance. The following optimizations can easily be implemented within any FM-
Index lay-out design and quantitatively help to reduce the overall number of operations 
to compute the LFc 

 
Incorporated C[c] counters 
Recalling the basic LFc definition (LFc(i, c) = C[c] + rank(c, i)), to the computation of 
rank(c,i), we need to add the content of the accumulated occurrence array (i.e. C[c]). 
Note that this addition is repeated each time we call the LFc function. For that reason, 
we can add the content of C[c] to each mayor counter of the FM-Index (Ci[c]) and 
avoid this addition whenever LFc is called. 
 
XOR character table 
In order to avoid conditional code in the LFc function, we can replace the conditional 
negation of the text bitmaps using small translation tables indexed by the character of 
the query. The resulting code is compact and avoids the use of conditional expressions 
which can lead to possible stalls in the pipeline. 
 
Bitmap mask table 
Note that the last computation of the LFc function involves shifting unwanted bits to 
compute the popcount of the remaining ones. In order to reduce computations, we can 
replace the subtraction and the shift using a mask table with the precomputed masks. 
The resulting code reduces arithmetic operations in favor of an indexed access to a small 
array that can be cached easily. 
 
Power-of-two divisions/modulus 
Divisions and modulus operations by powers of two can easily be replaced for shifts and 
masking instructions. Indeed, a modern compiler is expected to perform this 
substitution on-the-fly. As a result, some of the most computationally intensive 
instructions are avoided and much faster code can be generated. 
 
Specialised popcount hardware instruction 
Out of all the instructions executed within the LFc function, the popcount operation can 
be the most time consuming. In fact, this operation is so computationally intensive and 
recurrent in computer applications that many hardware architectures implement 
tailored instructions for it. In the case of Intel architectures, the SSE 4.2 instruction set 
extensions offer popcount hardware instruction that can greatly accelerate this 
computation. LFc implementations using it can experiment a speedup of almost a 30% 
popcount [Warren 13]. 
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2.2. Sequence filtering accelerating computations 
 
2.2.1. Block-wise computations 
 
One of the most widely known approaches to improving the computation of the DP table 
is the so-called Four-Russians technique [Kronrod 70]. Their approach pre-computes all 
possible combinations of small DP tables of size b (i.e. look-up table of all possible DP 
blocks of size b). Afterwards the algorithms proceed block-wise computing the full 
matrix taking advantage of precomputed blocks; thus gaining a factor of b. Since 
neighboring cells differ at most by one, the DP is encoded using horizontal– or vertical – 
differences (δe(i,j) ∈ {−1,0,+1}). This makes a total of (3|Σ|)2bpossible input 
combinations to each precomputed block. Choosing b=O(log(|P|)) the complexity gets 
reduced to 𝑂( |'|∗|)|

*+,(|'|)
). In short, assuming equal text and pattern length n, the 

complexity drops from O(n2) to O(n2/ log(n)) 

 
2.2.2. Bit-parallel algorithms 
 
Another very successful technique employed to accelerate the computation of pair-wise 
alignment is to exploit the intrinsic parallelism of the computer instructions. Nowadays, 
any computer architecture offers simple arithmetical and logical instructions that can 
be understood as parallel operators over a set of bits. These operations can be 
performed using 32 or 64 bit words and, depending on the architecture, using SIMD 
instruction from 128 to 512 bits long. 
 
Here, the key insight is to encode the problem conveniently so as to benefit from simple 
bit-wise instructions. Algorithms based on this idea are able to compute several cells of 
the DP table – or states of the NFA – at once, enabling much faster computation of pair-
wise alignments. 
 
Most notably, Myers in [Myers 99] proposed the computation of the DP matrix encoding 
columns using bit-words and using bit-wise operations to fill the matrix. The so-called 
Bit-Parallel Myers (BPM) takes advantage of the intrinsic parallelism within bit-wise 
operations of any computer architecture (i.e logical, shift, and addition operations).  
 
In this approach, columns of the DP matrix are encoded in differences among 
themselves. As explained before, this reduces the number of possible values of each cell 
to the values {−1, 0, +1}. Then, each cell of the matrix is modelled as a logic block. In this 
way, the basic step of the processing takes a column of the DP and produces the next 
column using bit-wise operations. This process iterates so as to compute the whole 
matrix chunk-wise meanwhile the cells of each column are computed intrinsically in 
parallel. Low-level details of the algorithm make it one of the quickest bit-wise 
algorithms of its type [Myers 99; Hyyro 03]. 
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The BPM algorithm has a worst-case complexity of O(|P||w|/b) – where b is the length 
of the computer word used – and O(e|w|/b) on average as cut-off conditions can be 
easily implemented within. What is more, this algorithm performs better than others of 
its kind with long patterns. For this reason, it is often the choice of many real mappers 
[Marco-Sola 12; Siragusa 13] based on filtering to verify candidates. Additionally, in 
[Hyyro 02] an improved version of the BPM algorithm was proposed so as to reduce the 
overall bit-wise operations performed. 
 
2.2.3. SIMD algorithms 
 
Using general scores, some techniques have been proposed to exploit SIMD instructions 
in order to compute several cells of the DP matrix at once. The key idea is to allocate 
several cells into a computer register and compute the DP matrix by blocks [Alpern 95]. 
In this way, these algorithms differ in that they arrange the cells into the registers (i.e. 
by columns [Rognes 00], anti-diagonals [Wozniak 97] or interleaved [Rognes 11]). The 
main challenge of these methods is to incorporate all the dependencies in the SIMD 
computation without introducing mayor slowdowns. In this way, Farrar’s approach in 
[Farrar 07] proves to be the most efficient, achieving from 2x-8x folds against previous 
approaches. In practice, this method is widely used and some mappers based on SWG 
distance implement it [Langmead 12; Li 13]. 
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3. Main bioinformatics acceleration proposals 
 
3.1. Wavefront alignment algorithm to accelerate sequence alignment on GPU 
platforms 
 
One of the most relevant proposals presented during the project is the new Wavefront 
Alignment algorithm (WFA) [Marco-Sola 21]. The WFA algorithm proposes an alternative 
encoding of the DP-matrix and an efficient algorithm to compute partial alignments of 
increasing distance. As a result, the WFA algorithm only needs to calculate a small 
number of DP-matrix cells to find the optimal alignment. This way, WFA exploits 
similarities between sequences to reduce the time complexity to O(ne), being n the 
sequence length and e the optimal edit-distance, reducing the memory requirements to 
O(e2). 
 
Until recently, adaptive-band methods seek to heuristically delimit the alignment path 
to avoid computing DP cells whose score is too high. Compared to them, the WFA 
algorithm naturally computes cells of the DP matrix by increasing score without 
introducing further complexities. Due to its simplicity, the WFA algorithm can be easily 
vectorized using SIMD instructions, as opposed to traditional DP-based algorithms. 
Moreover, data dependencies can be automatically understood by modern compilers to 
transparently issue SIMD instructions for any supported vectorial architecture. 
Furthermore, when aligning moderately long sequences (i.e., less than 255 bases), the 
WFA can encode diagonal offsets using 8-bit integers, which not only enhances SIMD 
performance but also further reduces the memory footprint. 
 
3.2. Wavefront-GPU 
 
Our implementation provides exact edit-distance alignment (i.e., not heuristic), 
outperforming other state-of-the-art methods. Also, we present the piggybacked 
backtrace strategy, a novel optimization technique that dramatically reduces the 
amount of memory needed for aligning sequences. Not only this technique requires 
storing only two wavefronts, it also makes the alignment generation faster.  
 
Additionally, we implemented a high-performance sequence packing kernel that allows 
block-wise comparisons between sequences. This accelerated operation significantly 
improves one of the most time-consuming operations of the WFA (the extend operator). 
Moreover, our implementation is fully asynchronous and overlaps compute kernels and 
memory transfers to accelerate the algorithm execution, hiding memory transfer 
latencies with computation 
 
All in all, our implementation represents an efficient solution for applications that 
require fast computation of exact edit-distance alignment of large DNA sequence 
datasets. 
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3.3. Wavefront-FPGA 
 
Another bioinformatics proposal is the acceleration of the WFA algorithm in FPGA 
platforms. In a hardware/software co-designed scheme, the FPGA accelerator will 
compute the alignment of pairs of sequences and generate the results in a compacted 
form that eases CPU-FPGA communication. Then, the CPU threads unpack the 
compacted forms to achieve the final results in parallel.  
 
The FPGA accelerator design is composed of multiple aligners that collaboratively 
compute the sequence alignments. The proposed design of the aligners allows a 
configurable maximum read length and error score between the reads. Thus, they can 
be adapted to the characteristics of the reads generated by different sequencing 
machines and technologies. These design parameters determine the resources required 
by each aligner and, thus, the number of parallel aligners that can be placed in the FPGA.  
 
Sequence analysis starts by CPU parsing the input files and storing them in the memory. 
Then, the FPGA reads the data, computes the alignments by iteratively performing the 
extend and compute steps, and writes the results to the memory in compact CIGAR 
form. After that, multiple CPU threads read and check the FPGA results and finish the 
backtrace step by unpacking the compact CIGARs to full CIGARs. 
 
In our experiments with the reference CPU-only implementation of the WFA algorithm, 
the extend, compute and backtrace steps are responsible for around 50%, 45% and 5% 
of the total execution time, respectively. Hence, offloading the extend and compute 
steps to the FPGA is crucial to accelerate the algorithm. In addition, offloading the 
backtrace step to the FPGA is also beneficial because, although this step has a small 
weight on the total execution time, it requires reading the whole data of all the 
wavefronts. Thus, to minimize bandwidth-bound data transfers between the CPU and 
the FPGA, the presented accelerator innovatively divides the backtrace step in two 
parts, one in the FPGA that computes the CIGARs in a compacted form of only 8 bytes, 
and one in the CPU that unpacks the compact CIGARs and generates the full CIGARs.  
 
The FPGA design is composed of three main modules:  

• The Aligner module: implements the main computational steps of the WFA 
algorithm. A configurable number of Aligners can be instantiated in the design 
so they process alignments in parallel.  

• The Extractor module: distributes sequences among the aligners  
• The Collector module: gathers results from the aligners. 

 
3.4. Pre-alignment filters on FPGA platforms 
 
There are some strategies to map sequences into a reference genome since all 
individuals from the same species share almost all the genome except a very small 
percentage due to mutations and evolution. Read mappers also must consider 
sequencing errors introduced by sequencers. Considering the differences between the 
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reads and the reference, the mapping cannot be based on exact string matching. The 
alternative is to use approximate string-matching algorithms to compute an estimation 
of the distance between the strings being compared (the lower the better) or their 
alignment or similarity score (the higher the better). 
 
In this approach, some short subsequences, called seeds, are extracted from the reads. 
The seeds are used to search for exact matches in the reference. Many candidate 
locations are obtained from this first step, but the number is orders of magnitude 
smaller than the original possible locations. Then, the whole read is compared against 
an extended search context around the candidate locations using approximate 
matching. The locations from all candidates that match within a lower distance than a 
given threshold are finally selected as possible mappings. 
 
The drawback of this solution is that multiple candidates are evaluated for every read, 
and almost all of them are discarded, incurring in a considerable computational cost that 
goes to waste. There are some proposals to reduce part of this excessive computation 
defining a new sequence processing stage commonly known as pre-alignment filtering. 
These filters quickly discard pairs of sequences that are too different and avoid 
computing the approximate distance between them. 
 
The algorithmic simplicity of pre-alignment filters and the data parallelism of the large 
number of candidates’ evaluation makes them very adequate for their implementation 
in heterogeneous computing accelerators such as GPUs and FPGAs. 
 
We have implemented several pre-alignment filters in GPU and FPGA accelerators to 
evaluate the performance impact of their use in a genomic analysis pipeline: 
 

• Implementations of three state-of-the-art FPGA-based inexact pre-alignment 
filters (SHD [Alser 17], Shouji [Alser 19], and Sneaky-Snake [Alser 21]) and two 
exact pre-alignment filters (Banded-Lev and Banded-Myers [Myers 99]). 

• Analysis of the relationship between accuracy and performance of pre-alignment 
filters. 

 
3.5. ISA SIMD Vector Extensions for bioinformatics applications 
 
Vectorization is a vital tool for improving the performance of code running on modern 
CPUs. It is the process of transforming an algorithm from performing on a single value 
at a time to operating on a larger set of values at once. Modern CPUs provide explicit 
support for vector operations where a single instruction is applied to multiple data (i.e., 
SIMD). There is a range of alternatives and tools for implementing vectorization. An 
established way to perform vectorization is using vector intrinsics. 
 
Our proposal is to study and evaluate the case of using Advanced Vector Extensions 
(AVX) to vectorize and accelerate the wavefront WFA algorithm. We explore the use of 
AVX2 and AVX-512. This ISA extension provides 32 512-bit wide registers [zmm0, 
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zmm31] and can perform single instruction multiple data (SIMD) instructions over 
vectors of 512 bits. 
 
Three primary vector data types are specified. First is m512, which accounts for a 512-
bit vector containing 16 floats. Then we have m512d, which describes a 512-bit vector 
containing eight doubles. Finally, we have m512i 512-bit vector containing integers. An 
integer vector type can contain any type of integer, from chars to shorts to unsigned 
long longs. An m512i may contain sixty-four chars, thirty-two shorts, Sixteen ints, or 
eight longs. These integers can be signed or unsigned. 
 
Sequence alignment kernel of most common tools is based on traditional DP-based algo- 
rithms, like Smith-Waterman-Gotoh (i.e., KSW2 [Li 18]), which require quadratic time 
and memory on the length of the sequences. As a result, the computational 
requirements of classical DP-based approaches quickly become a critical performance 
bottleneck, and most of these methods fail to scale with longer read lengths. Moreover, 
intrinsic dependencies on the DP recurrences limit the effectiveness of vectorization 
approaches. 
 
We propose the utilization of the WFA algorithm to replace classical DP-based alignment 
algorithms as it can be effectively vectorized using SIMD instructions. Both stages of the 
WFA algorithm (i.e., extend and compute) are suitable for vectorization. The first stage 
(WFA compute) can be easily vectorized using the auto-vectorization features of modern 
compilers. However, the second stage (WFA extend) requires a fine-tuned tailored 
vectorized implementation. 
 
By utilizing the vectorized WFA algorithm we can accelerate the genome-mapping tools 
(Minimap2 and Bwa-Mem2) that use the widely-used DP-based algorithm KSW2, for 
their alignment step. 
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4. Main performance results  
 
4.1. Wavefront algorithm WFA 
 
We have evaluated the performance of WFA algorithm in comparison with commonly 
used libraries that implement optimized versions of well-known pairwise alignment 
methods configured to generate global alignments. We have used three categories: 
'exact gap-affine' for exact algorithms using gap-affine penalties, 'banded gap-affine' for 
approximate algorithms that use gap-affine penalties, and 'others' for exact methods 
that use other penalty models. 
 
 
 
Datasets include a list of 100.000 short read sequences from Illumina HiSeq 2000, and 
25.000 ONT MinION long read sequences. Also, we simulated several datasets of various 
lengths (i.e., 100, 1K, 10K and 100K bases), with different error rates (i.e., d=1, 2, 5, 10 
and 20% error rate) by means of randomly adding mismatches and indels. For every 
dataset, we select as many sequences as needed, so that each of them contains a total 
of 10 million bp. 
 
Tests were done on an Intel Xeon Platinum 8160 equipped with 96 GB of RAM, running 
SuSE Linux Enterprise Server.  
 
Table 1 summarizes the execution time performance results obtained for all the 
algorithms evaluated using real and simulated datasets. 
 

 
Table 1: execution time performance of sequence alignment algorithms 

 
On real datasets, the WFA performs many times faster than other methods. Aligning 
HiSeq sequences, our method is 200–300 times faster compared to traditional DP 
algorithms, and 20–40 times faster than the adaptive-band methods. Similarly, when 
aligning ONT sequences, the WFA performs 28–200 and 6–7 times faster than DP 
algorithms and adaptive-band methods, respectively. Moreover, it is several times 
faster than methods that only compute the alignment score.  
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When aligning simulated datasets, WFA methods consistently out-perform other 
algorithms. Overall, WFA and adaptive-band methods are faster than classical DP 
algorithms. As the read length increases, Parasail [Daily 16] and SeqAn’s[Rahn 18] 
implementations require impractical running times. Notably, BitPAl [Loving 14] and 
ParaBand [Daily 16] running times remain reasonably low, but their results are limited 
to the alignment score. Altogether, these methods prove to be completely insensitive 
to the error between the sequences. For that reason, WFA methods achieve remarkable 
speedups when the error rate remains moderate (i.e., d= 1–5%). For instance, compared 
to ParaBand, WFA methods run up to 13 and 78 times faster for error rates of 1 and 5%, 
respectively; and up to 138 and 814 times faster compared to BitPAl for the same error 
rates. 
 
On the other hand, WFA methods prove to be generally faster and more accurate than 
adaptive-band methods. Although these adaptive algorithms prove to be superior to 
classical approaches, WFA methods scale better with both the sequence length and the 
error rate. Executions of the KSW2 library consistently take between 2 and 510 times 
longer than the WFA. In the demanding scenario of aligning reads of 100K bases at just 
1% of divergence rate, WFA runs more than three orders of magnitude faster than the 
KSW2 algorithms. 
 
In general, as the error rate increases, adaptive-band methods either take longer to 
finish, like KSW2-Z2 and KSW2-D2, or become insensitive reporting suboptimal 
alignments, like Gaba. Notably, only the WFA methods could successfully align all 
datasets of 100K bases, whereas other methods took an unreasonable amount of time 
or failed. Moreover, WFA could finish all the executions in less than 7 seconds achieving 
the maximum possible recall; that is, reporting 100% of the optimal alignments. 
 
4.2. Accelerated wavefront results and experimentation 
 
To provide a review of the final performance of the methods developed during the 
project, we present an analysis of the alignment of 10 million sequences considering 
most relevant parameters as sequence length and error rates. Results shown in 
summary table 1 provide total execution time and data transfer times between host and 
device. 
 
We performed the experimental evaluation of our solution on an IBM Power9 processor 
(20 cores with 4 threads per core), equipped with an NVIDIA V100 GPU with 16GB of 
HBM2 memory connected through NVLink.  
 
We used synthetic datasets consisting of 10 million sequence pairs of lengths 150, 300, 
and 1000 nucleotides, and error rates of 2%, 5%, and 10%. For comparison, we selected 
representative and widely used libraries and tools from the state-of-the-art. We focused 
on those CPU and GPU implementations that stand out in terms of performance or 
implement the latest algorithmic approaches. 
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For the CPU evaluation, we selected Edlib [Sosic 17]; WFA, an optimised CPU version of 
the WFA [Marco-Sola 21] adapted to the edit-distance; BPM, a highly optimised version 
of the BitParallel Myers algorithm [Myers 99]; and the O(ND) algorithm [Myers 86] used 
at the core of the Linux diff tool. All CPU executions were performed using 80 threads, 
as the best performance (execution time) is obtained with this number of threads. 
 
From the multiple GPU implementations available, we have selected those that could 
be deployed, executed without faults, and had a competitive execution time. In 
particular, we evaluated two methods from NVBio [Subtil 15] framework, the 
WmCudaTile algorithm from xbitpar [Tran 16], and the highly optimised GASAL2 [Ahmed 
19].  
 
Overall, results show that GPU WFA accelerated version executes 2.9-265 times faster 
than the CPU-based methods and 8-56 times faster than other GPU implementations. 
 
Compared to established CPU alignment algorithms, results show an acceleration of 24-
102 times faster than the BPM algorithm and 19-100 faster than the O(ND) 
implementation. Similarly, we obtain speedups of 31-265 compared to Edlib. Compared 
to the CPU implementation of the method developed, our GPU implementation delivers 
3-9× times more performance. In particular, the speedups obtained in GPU platforms 
increase with higher alignment error rates as the wavefronts increase in size and more 
wavefront computation can be done in parallel. 
 
Regarding the existing GPU algorithms, our proposal outperforms the widely used NVBio 
library, achieving speedups of 2.5-7.4 times compared to NVBio’s classical DP-based 
implementation and speedups of 4.5-7.2 times compared to NVBio’s BPM. Compared to 
wmCudaTile, eWFA-GPU achieves up to 12 times speedup for short sequences (i.e., 150 
nucleotides) and up to 56 times speedup for longer sequences. Compared to GASAL2, 
eWFA-GPU is 10-30 times faster.  
 
In general, our proposal execution time scales better with increasing sequence length 
values, compared to the other GPU implementations. In particular, the performance of 
DP-based methods, like GASAL2, is strongly limited by the sequence length. Ultimately, 
aligning long sequences with GASAL2 becomes impractical (e.g., 1000 nucleotides or 
more). For a fair comparison, it is important to acknowledge that GASAL2 implements 
the gap-affine distance, which is more complex and costly than computing the edit-
distance alignment. 
 
Unsurprisingly, DP-based implementations (i.e., BPM, Edlib, NVBio, and GASAL2) are 
insensitive to the alignment error, performing the same number of computations to 
align similar sequences as to align very divergent ones. As a result, the performance of 
classical DP-based algorithms is heavily constrained by the sequence length and not by 
the sequences homology. For that reason, some tools, like Edlib, implement heuristics 
that prune the DP computations at the expense of potentially missing the optimal 
alignment (note the reduction in the execution time when aligning sequences of 1000 
nucleotides with 5% error rate).  
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In contrast, error-sensitive methods, like our proposal, perform faster when aligning 
highly similar sequences, exploiting similarities between the sequences to accelerate the 
alignment process. These methods are only constrained by the nominal number of 
differences between the sequences. 
 
As a summary, in table 2, we provide a view of the alignment times for an input of 10 
million alignments. Results show edit-distance computation and full alignment 
execution times. 
 

 
Table 2: summary of performance of methods for a 10 million alignments input. 

 
 
4.3. Wavefront-FPGA 
 
We have evaluated the proposed WFA accelerator with different designs for typical read 
lengths and error score values on a high performance system with a POWER9 CPU and 
2 FPGAs.  
 
We provide performance results of using a POWER9-based system with 512GB of RAM 
and 2 FPGA boards. The POWER9 CPU has 16 cores with 4 threads per core running at 
2.3GHz, and it is connected to 2 ADM-PCIE-9H7 FPGA boards with OpenCAPI, which 
provides coherent access to the host memory from the FPGAs and data transfer speeds 
of up to 22GB/s. The FPGAs are Xilinx Virtex UltraScale Plus XCVU37P-2E (FSVH2892), 
which run at 200MHz and have 2607k FFs, 1304k LUTs, 9024 DSPs, 70.9Mb BRAMs and 
270Mb URAMs each.  
 
We randomly generate a list of input sets with different maximum sequence lengths and 
K values and we feed them to their corresponding FPGA design. Each input set contains 
10 million pairs of sequences with random mismatches, insertions and deletions. Note 
that, given a maximum sequence length and K, an FPGA design can correctly process any 
input containing shorter sequences for smaller Ks. Nevertheless, a tailored instantiation 
requires less space in the FPGA and maximizes the number of aligners that can fit in the 
FPGA. 
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Compared to a reference multithreaded CPU implementation of the traditional Smith-
Waterman-Gotoh, the WFA-CPU achieves speedups from 8.4 to 53.3 times for the input 
sets we consider, and the proposed accelerator outperforms it by 42.6 to 383.8 times 
with 1 FPGA and by 76.6 to 634.3 times with 2 FPGAs. In addition, compared to a Banded 
Smith-Waterman heuristic method that does not perform the backtrace calculation, the 
proposed WFA accelerator achieves speedups from 37.4 to 93.5 times with 1 FPGA and 
from 55.9 to 154.8 times with 2 FPGAs for the same input sets considered in this work. 
 
It is also important to mention the achieved improvement in energy consumption of the 
different FPGA designs compared to the reference WFA. To report meaningful power 
consumption measurements, in this experiment we repeat the alignment of the same 
input set several times so the fastest execution takes at least 30 seconds. For each input 
set, the number of repetitions and the total amount of work to be performed is the same 
in the WFA-CPU and the FPGA design. We use in-band readings from Linux to the OCC 
(On Chip Controller) to measure the power consumption of the whole node (CPU and 
FPGAs). Results show that the different FPGA designs consume significantly less energy 
than the WFA-CPU, with energy improvements of 6.1 to 9.7 times with 1 FPGA and of 
11.4 to 14.6 times with 2 FPGAs. 
 
4.4. Pre-alignment filters on FPGA platforms 
 
We have implemented the most-relevant FPGA pre-alignment filters of the literature 
using HLS toolchains that can be executed through the OpenCL runtime. The designs can 
be integrated easily in genomic datacenters with FPGA accelerators providing important 
performance and energy efficiency improvements of several orders of magnitude with 
respect to CPU-based Levenshtein distance computation. 
 
We analyze the performance of the filters by executing synthetic benchmarks having 10 
million sequences of length between 100 and 300 base pairs. 
 
We report the throughput of FPGA HDL-based implementation in original papers and 
the throughput of our best performing OpenCL implementation on the following 
platforms:  

• Intel Stratix 10 1SX280  
• Intel Arria 10 10AX115N2 HARPv2 system.  

 
We have analyzed the speedup factor with respect to the execution time of the 
Levenshtein distance using Edlib with a single thread on an Intel Xeon Gold 6230 (0.314 
MPairs/s computing edit distance using 100 bp and 0.094 MPairs/s obtaining the 
backtrace).  
 
Main results are shown in table 3, where we describe the performance of implemented 
filters in the selected FPGA accelerator platforms. 
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Table 3: filtering performance of 100bp in FPGA accelerator platforms 
 
The results show that our OpenCL implementations on the external memory-based 
accelerator D5005 is between 20% and 40% faster than the HDL coded solutions in the 
literature, and more than 120% faster on the HARPv2 platform, which is based on a 
shared memory architecture. 
 
The maximum achieved throughput of 95.1 million base pairs/second including memory 
transferences of the Banded-Myers filter is the highest reported to date for an exact 
filter. Without considering memory transferences, the achieved throughput is even 
significantly higher: 178.8 MPairs/s. 
 
4.5. ISA SIMD Vector Extensions for bioinformatics applications 
 
We want to provide a view of the performance impact of the vectorization of the 
alignment phase of the common tools. For that, we have calculated the potential 
speedups we could reach for the genome- mapping tools (Minimap2, Bwa-Mem2), if we 
substitute their alignment algorithm (KSW2) with the vectorized WFA implementation. 
Main results of the tests is shown in table 4. 
 
We use real short and long sequence datasets (Illumina, PacBio, Nanopore) and four 
simulated (D1, D2, D3, D4). KSW2 is the current version of KSW used in the genome 
tools. WFA (no SIMD) represents the version of WFA where we do not use any form 
vectorization. WFA (partial-SIMD) only uses auto-vectorization in the compute part of 
the algorithm. WFA+AVX2 uses auto-vectorization in the algorithm’s compute part and 
AVX2 vectorization intrinsics for the extend part. The WFA+AVX2 also uses auto-
vectorization in the compute part, using this time AVX-512 vectorization intrinsics. For 
all the datasets, the AVX vectorized versions of WFA deliver the best results. 
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Table 4: Execution Time of KSW and WFA vectorized implementations 

 
The derived speedups indicate a significant improvement in execution time. The lower 
speedup is 2.4 for the D4 dataset of short reads. The most significant speedup is equal 
to 826.7, and we achieve it for the long sequence PacBio dataset- 
 
By utilizing the vectorized WFA algorithm we can accelerate the genome-mapping tools 
(Minimap2 and Bwa-Mem2) that use the widely used DP-based algorithm KSW2, for 
their alignment step. Specifically, our evaluation indicated that our vectorized AVX 
implementation achieves speedups from 2.4× up to 826.7× compared to KSW2. In 
return, this can yield significant potential speedups for the genome tools mentioned 
above, from 1.3 up to 2.9. 
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